ترغب بنشر مسار تعليمي؟ اضغط هنا

Fortran 90 implementation of the Hartree-Fock approach within the CNDO/2 and INDO models

199   0   0.0 ( 0 )
 نشر من قبل Alok Shukla
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the tremendous advances made by the ab initio theory of electronic structure of atoms and molecules, its applications are still not possible for very large systems. Therefore, semi-empirical model Hamiltonians based on the zero-differential overlap (ZDO) approach such as the Pariser-Parr-Pople, CNDO, INDO, etc. provide attractive, and computationally tractable, alternatives to the ab initio treatment of large systems. In this paper we describe a Fortran 90 computer program developed by us, that uses CNDO/2 and INDO methods to solve Hartree-Fock(HF) equation for molecular systems. The INDO method can be used for the molecules containing the first-row atoms, while the CNDO/2 method is applicable to those containing both the first-, and the second-row, atoms. We have paid particular attention to computational efficiency while developing the code, and, therefore, it allows us to perform calculations on large molecules such as C_60 on small computers within a matter of seconds. Besides being able to compute the molecular orbitals and total energies, our code is also able to compute properties such as the electric dipole moment, Mulliken population analysis, and linear optical absorption spectrum of the system. We also demonstrate how the program can be used to compute the total energy per unit cell of a polymer. The applications presented in this paper include small organic and inorganic molecules, fullerene C_60, and model polymeric systems, viz., chains containing alternating boron and nitrogen atoms (BN chain), and carbon atoms (C chain).



قيم البحث

اقرأ أيضاً

We study the equilibration and relaxation processes within the time-dependent Hartree-Fock approach using the Wigner distribution function. On the technical side we present a geometrically unrestricted framework which allows us to calculate the full six-dimensional Wigner distribution function. With the removal of geometrical constraints, we are now able to extend our previous phase-space analysis of heavy-ion collisions in the reaction plane to unrestricted mean-field simulations of nuclear matter on a three-dimensional Cartesian lattice. From the physical point of view we provide a quantitative analysis on the stopping power in TDHF. This is linked to the effect of transparency. For the medium-heavy $^{40}$Ca+$^{40}$Ca system we examine the impact of different parametrizations of the Skyrme force, energy-dependence, and the significance of extra time-odd terms in the Skyrme functional. For the first time, transparency in TDHF is observed for a heavy system, $^{24}$Mg+$^{208}$Pb.
In this work, we study the extended Falicov-Kimball model at half-filling within the Hartree-Fock approach (HFA) (for various crystal lattices) and compare the results obtained with the rigorous ones derived within the dynamical mean field theory (DM FT). The model describes a system, where electrons with spin-$downarrow$ are itinerant (with hopping amplitude $t$), whereas those with spin-$uparrow$ are localized. The particles interact via on-site $U$ and intersite $V$ density-density Coulomb interactions. We show that the HFA description of the ground state properties of the model is equivalent to the exact DMFT solution and provides a qualitatively correct picture also for a range of small temperatures. It does capture the discontinuous transition between ordered phases at $U=2V$ for small temperatures as well as correct features of the continuous order-disorder transition. However, the HFA predicts that the discontinuous boundary ends at the isolated-critical point (of the liquid-gas type) and it does not merge with the continuous boundary. This approach cannot also describe properly a change of order of the continuous transition for large $V$ as well as various metal-insulator transitions found within the DMFT.
We investigate the appearance of di-neutron bound states in pure neutron matter within the Brueckner-Hartree-Fock approach at zero temperature. We consider Argonne $v_{18}$ and Paris bare interactions as well as chiral two- and three-nucleon forces. Self-consistent single-particle potentials are calculated controlling explicitly singularities in the $g$ matrix associated with bound states. Di-neutrons are loosely bound, with binding energies below $1$ MeV, but are unambiguously present for Fermi momenta below $1$ fm$^{-1}$ for all interactions. Within the same framework we are able to calculate and characterize di-neutron bound states, obtaining mean radii as high as $sim 110$ fm. The resulting equations of state and mass-radius relations for pure neutron stars are analyzed including di-neutron contributions.
We derive a spin diffusion equation for a spin-orbit coupled two-dimensional electron gas including the Hartree-Fock field resulting from 1st order electron-electron interactions. We find that the lifetime of the persistent spin helix, which emerges for equal linear Rashba- and Dresselhaus spin-orbit interactions, can be enhanced considerably for large initial spin polarizations due to the Hartree-Fock field. The reason is a reduction of the symmetry-breaking cubic Dresselhaus scattering rate by the Hartree-Fock field. Also higher harmonics are generated and the polarization of the persistent spin helix rotates out of the (Sy,Sz)-plane acquiring a finite Sx-component. This effect becomes more pronounced, when the cubic Dresselhaus spin-orbit interaction is large.
A new relativistic Hartree-Fock approach with density-dependent $sigma$, $omega$, $rho$ and $pi$ meson-nucleon couplings for finite nuclei and nuclear matter is presented. Good description for finite nuclei and nuclear matter is achieved with a numbe r of adjustable parameters comparable to that of the relativistic mean field approach. With the Fock terms, the contribution of the $pi$-meson is included and the description for the nucleon effective mass and its isospin and energy dependence is improved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا