ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly conductive PdCoO2 ultrathin films for transparent electrodes

99   0   0.0 ( 0 )
 نشر من قبل Takayuki Harada
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the successful synthesis of highly conductive PdCoO2 ultrathin films on Al2O3 (0001) by pulsed laser deposition. The thin films grow along the c-axis of the layered delafossite structure of PdCoO2, corresponding to the alternating stacking of conductive Pd layers and CoO2 octahedra. The thickness-dependent transport measurement reveals that each Pd layer has a homogeneous sheet conductance as high as 5.5 mS in the samples thicker than the critical thickness of 2.1 nm. Even at the critical thickness, high conductivity exceeding 104 Scm-1 is achieved. Optical transmittance spectra exhibit high optical transparency of PdCoO2 thin films particularly in the near-infrared region. The concomitant high values of electrical conductivity and optical transmittance make PdCoO2 ultrathin films as promising transparent electrodes for triangular-lattice-based materials.



قيم البحث

اقرأ أيضاً

We revealed the electrical transport through surface ferromagnetic states of a nonmagnetic metal PdCoO2. Electronic reconstruction at the Pd-terminated surface of PdCoO2 induces Stoner-like ferromagnetic states, which could lead to spin-related pheno mena among the highly conducting electrons in PdCoO2. Fabricating a series of nanometer-thick PdCoO2 thin films, we detected a surface-magnetization-driven anomalous Hall effect via systematic thickness- and termination-dependent measurements. Besides, we discuss that finite magnetic moments in electron doped CoO2 triangular lattices may have given rise to additional unconventional Hall resistance.
112 - M. Kiguchi , O. Tal , S. Wohlthat 2008
Highly conductive molecular junctions were formed by direct binding of benzene molecules between two Pt electrodes. Measurements of conductance, isotopic shift in inelastic spectroscopy and shot noise compared with calculations provide indications fo r a stable molecular junction where the benzene molecule is preserved intact and bonded to the Pt leads via carbon atoms. The junction has a conductance comparable to that for metallic atomic junctions (around 0.1-1 Go), where the conductance and the number of transmission channels are controlled by the molecules orientation at different inter-electrode distances.
We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances.
Graphene has exceptional optical, mechanical and electrical properties, making it an emerging material for novel optoelectronics, photonics and for flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constrain for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using non-volatile ferroelectric polymer gating. In this hybrid structure, large-scale graphene is heavily doped up to 3{times}1013 cm-2 by non-volatile ferroelectric dipoles, yielding a low sheet resistance of 120 {Omega}{Box} at ambient conditions. The graphene-ferroelectric transparent conductors (GFeTCs) exhibit more than 95% transmittance from the visible to the near infrared range owing to the highly transparent nature of the ferroelectric polymer. Together with its excellent mechanical flexibility, chemical inertness and the simple fabrication process of ferroelectric polymers, the proposed GFeTCs represent a new route towards large-scale graphene based transparent electrodes and optoelectronics.
243 - Jing Xia , W. Siemons , G. Koster 2008
Ultrathin films of the itinerant ferromagnet SrRuO$_3$ were studied using transport and magnto-optic polar Kerr effect. We find that below 4 monolayers the films become insulating and their magnetic character changes as they loose their simple ferrom agnetic behavior. We observe a strong reduction in the magnetic moment which for 3 monolayers and below lies in the plane of the film. Exchange-bias behavior is observed below the critical thickness, and may point to induced antiferromagnetism in contact with ferromagnetic regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا