ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes

112   0   0.0 ( 0 )
 نشر من قبل Oren Tal
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly conductive molecular junctions were formed by direct binding of benzene molecules between two Pt electrodes. Measurements of conductance, isotopic shift in inelastic spectroscopy and shot noise compared with calculations provide indications for a stable molecular junction where the benzene molecule is preserved intact and bonded to the Pt leads via carbon atoms. The junction has a conductance comparable to that for metallic atomic junctions (around 0.1-1 Go), where the conductance and the number of transmission channels are controlled by the molecules orientation at different inter-electrode distances.



قيم البحث

اقرأ أيضاً

The simplicity of single-molecule junctions based on direct bonding of a small molecule between two metallic electrodes make them an ideal system for the study of fundamental questions related to molecular electronics. Here we study the conductance p roperties of six different molecules suspended between Pt electrodes. All the molecular junctions show a typical conductance of about 1G0 which is ascribed to the dominant role of the Pt contacts. However, despite the metallic-like conductivity, the individual molecular signature is well-expressed by the effect of molecular vibrations in the inelastic contribution to the conductance.
We report measurements on single-electron pumps, consisting of two metallic islands formed by three tunnel junctions in series. We focus on the linear-response conductance as a function of gate voltage and temperature of three samples with varying sy stem parameters. In all cases, strong quantum fluctuation phenomena are observed by a log(k_B T/(2 E_co)) reduction of the maximal conductance, where E_co measures the coupling strength between the islands. The samples display a rich phenomenology, culminating in a non-monotonic behavior of the maximal conductance as a function of temperature.
98 - T. Harada , K. Fujiwara , 2018
We report on the successful synthesis of highly conductive PdCoO2 ultrathin films on Al2O3 (0001) by pulsed laser deposition. The thin films grow along the c-axis of the layered delafossite structure of PdCoO2, corresponding to the alternating stacki ng of conductive Pd layers and CoO2 octahedra. The thickness-dependent transport measurement reveals that each Pd layer has a homogeneous sheet conductance as high as 5.5 mS in the samples thicker than the critical thickness of 2.1 nm. Even at the critical thickness, high conductivity exceeding 104 Scm-1 is achieved. Optical transmittance spectra exhibit high optical transparency of PdCoO2 thin films particularly in the near-infrared region. The concomitant high values of electrical conductivity and optical transmittance make PdCoO2 ultrathin films as promising transparent electrodes for triangular-lattice-based materials.
One of the important issues of molecular spintronics is the control and manipulation of charge transport and, in particular, its spin polarization through single-molecule junctions. Using $ab$ $initio$ calculations, we explore spin-polarized electron transport across single benzene derivatives attached with six different anchoring groups (S, CH$_3$S, COOH, CNH$_2$NH, NC and NO$_2$) to Ni(111) electrodes. We find that molecule-electrode coupling, conductance and spin polarization (SP) of electric current can be modified significantly by anchoring groups. In particular, a high spin polarization (SP $>$ 80%) and a giant magnetoresistance (MR $>$ 140%) can be achieved for NO$_2$ terminations and, more interestingly, SP can be further enhanced (up to 90%) by a small voltage. The S and CH$_3$S systems, on the contrary, exhibit rather low SP while intermediate values are found for COOH and CNH$_2$NH groups. The results are analyzed in detail and explained by orbital symmetry arguments, hybridization and spatial localization of frontier molecular orbitals. We hope that our comparative and systematic studies will provide valuable quantitative information for future experimental measurements on that kind of systems and will be useful for designing high-performance spintronics devices.
Understanding the properties of electronic transport across metal-molecule interfaces is of central importance for controlling a large variety of molecular-based devices such as organic light emitting diodes, nanoscale organic spin-valves and single- molecule switches. One of the primary experimental methods to reveal the mechanisms behind electronic transport through metal-molecule interfaces is the study of conductance as a function of molecule length in molecular junctions. Previous studies focused on transport governed either by tunneling or hopping, both at low conductance. However, the upper limit of conductance across molecular junctions has not been explored, despite the great potential for efficient information transfer, charge injection and recombination processes. Here, we study the conductance properties of highly transmitting metal-molecule-metal interfaces, using a series of single-molecule junctions based on oligoacenes with increasing length. We find that the conductance saturates at an upper limit where it is independent of molecule length. Furthermore, we show that this upper limit can be controlled by the character of the orbital hybridization at the metal-molecule interface. Using two prototype systems, in which the molecules are contacted by either Ag or Pt electrodes, we reveal two different origins for the saturation of conductance. In the case of Ag-based molecular junctions, the conductance saturation is ascribed to a competition between energy level alignment and level broadening, while in the case of Pt-based junctions, the saturation is attributed to a band-like transport. The results are explained by an intuitive model, backed by ab-initio transport calculations. Our findings shed light on the mechanisms that constrain the conductance at the high transmission limit, providing guiding principles for the design of highly conductive metal-molecule interfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا