ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO$_3$

137   0   0.0 ( 0 )
 نشر من قبل Aharon Kapitulnik
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrathin films of the itinerant ferromagnet SrRuO$_3$ were studied using transport and magnto-optic polar Kerr effect. We find that below 4 monolayers the films become insulating and their magnetic character changes as they loose their simple ferromagnetic behavior. We observe a strong reduction in the magnetic moment which for 3 monolayers and below lies in the plane of the film. Exchange-bias behavior is observed below the critical thickness, and may point to induced antiferromagnetism in contact with ferromagnetic regions.

قيم البحث

اقرأ أيضاً

We report on a fundamental thickness limit of the itinerant ferromagnetic oxide SrRuO$_3$ that might arise from the orbital-selective quantum confinement effects. Experimentally, SrRuO$_3$ films remain metallic even for a thickness of 2 unit cells (u c), but the Curie temperature, T$_C$, starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the T$_C$ decrease to a decrease in the density of states (N$_o$). Namely, in the thin film geometry, the hybridized Ru-d$_yz,zx$ orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of N$_o$.
Topological transport phenomena in magnetic materials are a major topic of current condensed matter research. One of the most widely studied phenomena is the ``topological Hall effect (THE), which is generated via spin-orbit interactions between cond uction electrons and topological spin textures such as skyrmions. We report a comprehensive set of Hall effect and magnetization measurements on epitaxial films of the prototypical ferromagnetic metal SrRuO$_3$ the magnetic and transport properties of which were systematically modulated by varying the concentration of Ru vacancies. We observe Hall effect anomalies that closely resemble signatures of the THE, but a quantitative analysis demonstrates that they result from inhomogeneities in the ferromagnetic magnetization caused by a non-random distribution of Ru vacancies. As such inhomogeneities are difficult to avoid and are rarely characterized independently, our results call into question the identification of topological spin textures in numerous prior transport studies of quantum materials, heterostructures, and devices. Firm conclusions regarding the presence of such textures must meet stringent conditions such as probes that couple directly to the non-collinear magnetization on the atomic scale.
122 - Liang Wu , Fangdi Wen , Yixing Fu 2019
A notion of the Berry phase is a powerful means to unravel the non-trivial role of topology in various novel phenomena observed in chiral magnetic materials and structures. A celebrated example is the intrinsic anomalous Hall effect (AHE) driven by t he non-vanishing Berry phase in the momentum space. As the AHE is highly dependent on details of the band structure near the Fermi edge, the Berry phase and AHE can be altered in thin films whose chemical potential is tunable by dimensionality and disorder. Here, we demonstrate that in ultrathin SrRuO$_3$ films the Berry phase can be effectively manipulated by the effects of disorder on the intrinsic Berry phase contribution to the AHE, which is corroborated by our numerically exact calculations. In addition, our findings provide ample experimental evidence for the superficial nature of the topological Hall effect attribution to the protected spin texture and instead lend strong support to the multi-channel AHE scenario in ultrathin SrRuO$_3$.
In heterostructures of LaAlO3 (LAO) and SrTiO3 (STO), two nonmagnetic insulators, various forms of magnetism have been observed [1-7], which may [8, 9] or may not [10] arise from interface charge carriers that migrate from the LAO to the interface in an electronic reconstruction [11]. We image the magnetic landscape [5] in a series of n-type samples of varying LAO thickness. We find ferromagnetic patches that appear only above a critical thickness, similar to that for conductivity [12]. Consequently we conclude that an interface reconstruction is necessary for the formation of magnetism. We observe no change in ferromagnetism with gate voltage, and detect ferromagnetism in a non-conducting p-type sample, indicating that the carriers at the interface do not need to be itinerant to generate magnetism. The fact that the ferromagnetism appears in isolated patches whose density varies greatly between samples strongly suggests that disorder or local strain induce magnetism in a population of the interface carriers.
Detailed analysis of transport, magnetism and x-ray absorption spectroscopy measurements on ultrathin La0.7Sr0.3MnO3 films with thicknesses from 3 to 70 unit cells resulted in the identification of a lower critical thickness for a non-metallic, non-f erromagnetic layer at the interface with the SrTiO3 (001) substrate of only 3 unit cells (~12 Angstrom). Furthermore, linear dichroism measurements demonstrate the presence of a preferred (x2-y2) in-plane orbital ordering for all layer thicknesses without any orbital reconstruction at the interface. A crucial requirement for the accurate study of these ultrathin films is a controlled growth process, offering the coexistence of layer-by-layer growth and bulk-like magnetic/transport properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا