ﻻ يوجد ملخص باللغة العربية
We introduce a coupled wire model for a sequence of non-Abelian quantum Hall states that generalize the Z4 parafermion Read Rezayi state. The Z4 orbifold quantum Hall states occur at filling factors u = 2/(2m-p) for odd integers $m$ and $p$, and have a topological order with a neutral sector characterized by the orbifold conformal field theory with central charge $c=1$ at radius $R=sqrt{p/2}$. When $p=1$ the state is Abelian. The state with $p=3$ is the $Z_4$ Read Rezayi state, and the series of $pge 3$ defines a sequence of non-Abelian states that resembles the Laughlin sequence. Our model is based on clustering of electrons in groups of four, and is formulated as a two fluid model in which each wire exhibits two phases: a weak clustered phase, where charge $e$ electrons coexist with charge $4e$ bosons and a strong clustered phase where the electrons are strongly bound in groups of 4. The transition between these two phases on a wire is mapped to the critical point of the 4 state clock model, which in turn is described by the orbifold conformal field theory. For an array of wires coupled in the presence of a perpendicular magnetic field, strongly clustered wires form a charge $4e$ bosonic Laughlin state with a chiral charge mode at the edge, but no neutral mode and a gap for single electrons. Coupled wires near the critical state form quantum Hall states with a gapless neutral mode described by the orbifold theory. The coupled wire approach allows us to employ the Abelian bosonization technique to fully analyze the physics of single wire, and then to extract most topological properties of the resulting non-Abelian quantum Hall states. These include the list of quasiparticles, their fusion rules, the correspondence between bulk quasiparticles and edge topological sectors, and most of the phases associated with quasiparticles winding one another.
In this paper we use a close connection between the coupled wire construction (CWC) of Abelian quantum Hall states and the theory of composite bosons to extract the Laughlin wave function and the hydrodynamic effective theory in the bulk, including t
Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians,
Quantum Hall matrix models are simple, solvable quantum mechanical systems which capture the physics of certain fractional quantum Hall states. Recently, it was shown that the Hall viscosity can be extracted from the matrix model for Laughlin states.
We study geometric aspects of the Laughlin fractional quantum Hall (FQH) states using a description of these states in terms of a matrix quantum mechanics model known as the Chern-Simons matrix model (CSMM). This model was proposed by Polychronakos a
We propose and investigate a simple one-dimensional model for a single-channel quantum wire hosting electrons that interact repulsively and are subject to a significant spin-orbit interaction. We show that an external Zeeman magnetic field, applied a