ﻻ يوجد ملخص باللغة العربية
In this paper we use a close connection between the coupled wire construction (CWC) of Abelian quantum Hall states and the theory of composite bosons to extract the Laughlin wave function and the hydrodynamic effective theory in the bulk, including the Wen-Zee topological action, directly from the CWC. We show how rotational invariance can be recovered by fine-tuning the interactions. A simple recipe is also given to construct general Abelian quantum Hall states desceibed by the multi-component Wen-Zee action.
We introduce a coupled wire model for a sequence of non-Abelian quantum Hall states that generalize the Z4 parafermion Read Rezayi state. The Z4 orbifold quantum Hall states occur at filling factors u = 2/(2m-p) for odd integers $m$ and $p$, and hav
We propose an exact model of anyon ground states including higher Landau levels, and use it to obtain fractionally quantized Hall states at filling fractions $ u=p/(p(m-1)+1)$ with $m$ odd, from integer Hall states at $ u=p$ through adiabatic localiz
We study a model of a quantum dot coupled to a quantum Hall edge of the Laughlin state, taking into account short-range interactions between the dot and the edge. This system has been studied experimentally in electron quantum optics in the context o
We propose and investigate a simple one-dimensional model for a single-channel quantum wire hosting electrons that interact repulsively and are subject to a significant spin-orbit interaction. We show that an external Zeeman magnetic field, applied a
Neural networks have been used as variational wave functions for quantum many-particle problems. It has been shown that the correct sign structure is crucial to obtain the high accurate ground state energies. In this work, we propose a hybrid wave fu