ﻻ يوجد ملخص باللغة العربية
We propose and investigate a simple one-dimensional model for a single-channel quantum wire hosting electrons that interact repulsively and are subject to a significant spin-orbit interaction. We show that an external Zeeman magnetic field, applied at the right angle to the Rashba spin-orbit axis, drives the wire into a correlated spin-density wave state with gapped spin and gapless charge excitations. By computing the ground-state degeneracies of the model with either (anti-)periodic or open boundary conditions, we conclude that the correlated spin-density state realizes a gapless symmetry-protected topological phase, as the ground state is unique in the ring geometry while it is two-fold degenerate in the wire with open boundaries. Microscopically the two-fold degeneracy is found to be protected by the conservation of the magnetization parity. Open boundaries induce localized zero-energy (midgap) states which are described, at the special Luther-Emery point of the model, by Majorana fermions. We find that spin densities at the open ends of the wire exhibit unusual long-ranged correlations despite the fact that all correlations in the bulk of the wire decay in a power-law or exponential fashion. Our study exposes the crucial importance of the long-ranged string operator needed to implement the correct commutation relations between spin densities at different points in the wire. Along the way we rederive the low-energy theory of Galilean-invariant electron systems in terms of current operators.
The boundary modes of one dimensional quantum systems can play host to a variety of remarkable phenomena. They can be used to describe the physics of impurities in higher dimensional systems, such as the ubiquitous Kondo effect or can support Majoran
We study theoretically the effects of long-range and on-site Coulomb interactions on the topological phases and transport properties of spin-orbit-coupled quasi-one-dimensional quantum wires imposed on an s-wave superconductor. The electrostatic pote
Topological nodal superconductors possess gapless low energy excitations that are characterized by point or line nodal Fermi surfaces. In this work, using a coupled wire construction, we study topological nodal superconductors that have protected Dir
We investigate theoretically the quantum phase transition (QPT) between the one-channel Kondo (1CK) and two-channel Kondo (2CK) fixed points in a quantum dot coupled to helical edge states of interacting 2D topological insulators (2DTI) with Luttinge
We show that a $mathbb{Z}_3$ quantum double can be realized in an array of superconducting wires coupled via Josephson junctions. With a suitably chosen magnetic flux threading the system, the inter-wire Josephson couplings take the form of a complex