ﻻ يوجد ملخص باللغة العربية
In this report, an analytic model to predict phase transitions of confined fluids in nano systems is presented and it is used to predict the behavior of the confined fluid in nanotubes and nanoslits. In our approach besides including a third degree of freedom due to wall effect to define the state of the system, the tensorial character for pressure is considered. Using the perturbation theory of statistical mechanics it is shown that the van der Waals equation of state is equally valid for small as well as large systems. The model proposed is shown to predict the liquid-vapor phase transition as well as the critical point in any size confined fluid systems. It is also shown that the critical temperature increases with the size of the nano system and finally it reaches the macroscopic critical temperature value as the diameter of the nanotube (or width of the nanoslit) approaches infinity. The proposed model can also demonstrate the existence of the local density and phase fragmentations during phase transitions in a confined nano system.
The effects of elasticity on the break-up of liquid threads in microfluidic cross-junctions is investigated using numerical simulations based on the lattice Boltzmann models (LBM). Working at small Capillary numbers, we investigate the effects of non
Self-diffusion and radial distribution functions are studied in a strongly confined Lennard-Jones fluid. Surprisingly, in the solid-liquid phase transition region, where the system exhibits dynamic coexistence, the self-diffusion constants are shown
We experimentally study the dynamics of active particles (APs) in a viscoelastic fluid under various geometrical constraints such as flat walls, spherical obstacles and cylindrical cavities. We observe that the main effect of the confined viscoelasti
In this paper we present the molecular theory of viscosity of confined fluids in small or nano systems. This theory is also applicable to the interfacial viscosity. The basis of this research work is the Enskog kinetic theory and the Boussinesq const
We explore superfluidity for $^4$He confined in a porous glass which has nanopores of 2.5 nm in diameter, at pressures up to 5 MPa. With increasing pressure, the superfluidity is drastically suppressed, and the superfluid transition temperature appro