ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxygen vacancies induced ferroelectricity in relaxors with ABO3 structure

76   0   0.0 ( 0 )
 نشر من قبل Anna Morozovska Nickolaevna
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The consideration of oxygen vacancies influence on the relaxors with perovskite structure was considered in the framework of Landau-Ginzburg-Devonshire phenomenological theory. The theory applicability for relaxors is based on the existence of some hidden soft phonon polar mode in them, and its frequency could be zero at some negative temperature TC*. Main attention was paid to PZN-PLZT relaxor described by formula 0.3Pb(Zn1/3Nb2/3)O3-0.7(Pb0.96La0.04(ZrxTi1-x)0.99O3) with x = 0.52, where earlier experimental investigation of oxygen vacancies influence on the polar properties was performed and the evidence of oxygen vacancies induced ferroelectricity was obtained. Since the oxygen vacancies are known to be elastic dipoles, they influence upon elastic and electric fields due to Vegard and flexoelectric coupling. We include the vacancies elastic and electrostrictive contribution into free energy functional. The calculations of the vacancies impact on polar properties were performed using their concentration distribution function. It was shown that the negative Curie temperature of a relaxor TC* is renormalized by the elastic dipoles due to the electrostrictive coupling and can become positive at some large enough concentration of the vacancies. We calculated the local polarization and electric field induced by the flexo-chemical coupling in dependence on the concentration of oxygen vacancies. The coexistence of FE phase and relaxor state can take place because of inhomogeneity of vacancies concentration distribution.



قيم البحث

اقرأ أيضاً

154 - T. C. Rodel , J. Dai , F. Fortuna 2018
We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultra-high vacuum, and characterize its electronic structure using angle-resolved photoemission spectroscopy. The aluminum oxidizes into a lumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two $s$-type subbands, that we compare to the $d$-like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a 2D Fermi liquid with a Debye distribution of phonons.
The microscopic doping mechanism behind the superconductor-to-insulator transition of a thin film of YBa2Cu3O7 was recently identified as due to the migration of O atoms from the CuO chains of the film. Here we employ density-functional theory calcul ations to study the evolution of the electronic structure of a slab of YBa2 Cu3 O7 in presence of oxygen vacancies under the influence of an external electric field. We find that under massive electric fields isolated O atoms are pulled out of the surface consisting of CuO chains. As vacancies accumulate at the surface, a configuration with vacancies located in the chains inside the slab becomes energetically preferred thus providing a driving force for O migration towards the surface. Regardless of the defect configuration studied, the electric field is always fully screened near the surface thus negligibly affecting diffusion barriers across the film.
Using density functional theory calculations, ultrathin films of SrVO3(d1) and SrCrO3(d2) on SrTiO3 substrates have been studied as possible multiferroics. Although both are metallic in the bulk limit, they are found to be insulating as a result of o rbital ordering driven by lattice distortions at the ultrathin limit. While the distortions in SrVO3 have a first-order Jahn-Teller origin, those in SrCrO3 are ferroelectric in nature. This route to ferroelectricity (FE) results in polarizations comparable with conventional ferroelectrics.
The ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced tempe ratures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoOx) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by ~30%, resulting in a tunable oxygen deficient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.
ABO3 oxides with the perovskite-related structures are attracting significant interest due to their promising physical and chemical properties for many applications requiring tunable chemistry, including fuel cells, catalysis, and electrochemical wat er splitting. Here we report on the crystal structure of the entire family of perovskite oxides with ABO3 stoichiometry, where A and B are Ba, Sr, Mn, Ce. Given the vast size of this chemically complex material system, exploration for stable perovskite-related structures with respect to its constituent elements and annealing temperature is performed by combinatorial pulsed laser deposition and spatially-resolved characterization of composition and structure. As a result of this high-throughput experimental study, we identify hexagonal perovskite-related polytypic transformation as a function of composition in the Ba1-xSrxMnO3 oxides after annealing at different temperatures. Furthermore, a hexagonal perovskite-related polytype is observed in a narrow composition-temperature range of the BaCexMn1-xO3 oxides. In contrast, a tetragonally-distorted perovskite is observed across a wider range of compositions and annealing temperatures in the Sr1-xCexMnO3 oxides. This structure stability is further enhanced along the BaCexMn1-xO3 - Sr1-xCexMnO3 pseudo-binary tie-line at x=0.25 by increasing Ba-incorporation and annealing temperature. These results indicate that the BaCexMn1-xO3 - Sr1-xCexMnO3 pseudo-binary oxide alloys (solid solutions) with tetragonal perovskite structure and broad composition-temperature range of stability are promising candidates for thermochemical water splitting applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا