ترغب بنشر مسار تعليمي؟ اضغط هنا

High-density two-dimensional electron system induced by oxygen vacancies in ZnO

155   0   0.0 ( 0 )
 نشر من قبل Andres Felipe Santander-Syro
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We realize a two-dimensional electron system (2DES) in ZnO by simply depositing pure aluminum on its surface in ultra-high vacuum, and characterize its electronic structure using angle-resolved photoemission spectroscopy. The aluminum oxidizes into alumina by creating oxygen vacancies that dope the bulk conduction band of ZnO and confine the electrons near its surface. The electron density of the 2DES is up to two orders of magnitude higher than those obtained in ZnO heterostructures. The 2DES shows two $s$-type subbands, that we compare to the $d$-like 2DESs in titanates, with clear signatures of many-body interactions that we analyze through a self-consistent extraction of the system self-energy and a modeling as a coupling of a 2D Fermi liquid with a Debye distribution of phonons.



قيم البحث

اقرأ أيضاً

179 - Z. Q. Liu , W. Lu , S. W. Zeng 2014
We report very large bandgap enhancement in SrTiO3 (STO) films (fabricated by pulsed laser deposition below 800 {deg}C), which can be up to 20% greater than the bulk value, depending on the deposition temperature. The origin is comprehensively invest igated and finally attributed to Sr/Ti antisite point defects, supported by density functional theory calculations. More importantly, the bandgap enhancement can be utilized to tailor the electronic and magnetic phases of the two-dimensional electron gas (2DEG) in STO-based interface systems. For example, the oxygen-vacancy-induced 2DEG (2DEG-V) at the interface between amorphous LaAlO3 and STO films is more localized and the ferromagnetic order in the STO-film-based 2DEG-V can be clearly seen from low-temperature magnetotransport measurements. This opens an attractive path to tailor electronic, magnetic and optical properties of STO-based oxide interface systems under intensive focus in the oxide electronics community. Meanwhile, our study provides key insight into the origin of the fundamental issue that STO films are difficult to be doped into the fully metallic state by oxygen vacancies.
The consideration of oxygen vacancies influence on the relaxors with perovskite structure was considered in the framework of Landau-Ginzburg-Devonshire phenomenological theory. The theory applicability for relaxors is based on the existence of some h idden soft phonon polar mode in them, and its frequency could be zero at some negative temperature TC*. Main attention was paid to PZN-PLZT relaxor described by formula 0.3Pb(Zn1/3Nb2/3)O3-0.7(Pb0.96La0.04(ZrxTi1-x)0.99O3) with x = 0.52, where earlier experimental investigation of oxygen vacancies influence on the polar properties was performed and the evidence of oxygen vacancies induced ferroelectricity was obtained. Since the oxygen vacancies are known to be elastic dipoles, they influence upon elastic and electric fields due to Vegard and flexoelectric coupling. We include the vacancies elastic and electrostrictive contribution into free energy functional. The calculations of the vacancies impact on polar properties were performed using their concentration distribution function. It was shown that the negative Curie temperature of a relaxor TC* is renormalized by the elastic dipoles due to the electrostrictive coupling and can become positive at some large enough concentration of the vacancies. We calculated the local polarization and electric field induced by the flexo-chemical coupling in dependence on the concentration of oxygen vacancies. The coexistence of FE phase and relaxor state can take place because of inhomogeneity of vacancies concentration distribution.
91 - Yun Li , Xinyuan Wei , Jaejun Yu 2018
Using density-functional-theory (DFT) calculations with the HSE06 hybrid functional, we accurately evaluate the critical thickness of LaAlO3 film for the intrinsic doping in LaAlO3/SrTiO3 (LAO/STO) heterstructures. The calculated critical thickness o f 6 unit-cell (uc) layers suggests to rule out the intrinsic doping mechanism. We also calculate the density of oxygen vacancies on the LAO surface at varying LAO thicknesses, preparation oxygen pressures and temperatures by using the condition of chemical equilibrium and DFT calculations. We find that once LAO thickness >=3 uc high-density (~ 10^14 cm^-2 ) oxygen vacancies will inevitably exist on the LAO surface of the LAO/STO heterstructures even though the samples are grown under high oxygen pressure. The oxygen vacancies are stabilized by releasing the electrostatic energy in the LAO film.
176 - Z. Q. Liu , C. J. Li , W. M. Lu 2013
The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overl ayers on SrTiO3 have called in question the original polarization catastrophe model. We resolve the issue by a comprehensive comparison of (100)-oriented SrTiO3 substrates with crystalline and amorphous overlayers of LaAlO3 of different thicknesses prepared under different oxygen pressures. For both types of overlayers, there is a critical thickness for the appearance of conductivity, but its value is always 4 unit cells (around 1.6 nm) for the oxygen-annealed crystalline case, whereas in the amorphous case, the critical thickness could be varied in the range 0.5 to 6 nm according to the deposition conditions. Subsequent ion milling of the overlayer restores the insulating state for the oxygen-annealed crystalline heterostructures but not for the amorphous ones. Oxygen post-annealing removes the oxygen vacancies, and the interfaces become insulating in the amorphous case. However, the interfaces with a crystalline overlayer remain conducting with reduced carrier density. These results demonstrate that oxygen vacancies are the dominant source of mobile carriers when the LaAlO3 overlayer is amorphous, while both oxygen vacancies and polarization catastrophe contribute to the interface conductivity in unannealed crystalline LaAlO3/SrTiO3 heterostructures, and the polarization catastrophe alone accounts for the conductivity in oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures. Furthermore, we find that the crystallinity of the LaAlO3 layer is crucial for the polarization catastrophe mechanism in the case of crystalline LaAlO3 overlayers.
The study of zinc oxide, within the homogeneous electron gas approximation, results in overhybridization of zinc $3d$ shell with oxygen $2p$ shell, a problem shown for most transition metal chalcogenides. This problem can be partially overcome by usi ng LDA+$U$ (or, GGA+$U$) methodology. However, in contrast to the zinc $3d$ orbital, Hubbard type correction is typically excluded for the oxygen $2p$ orbital. In this work, we provide results of electronic structure calculations of an oxygen vacancy in ZnO supercell from ab initio perspective, with two Hubbard type corrections, $U_{mathrm{Zn}-3d}$ and $U_{mathrm{O}-2p}$. The results of our numerical simulations clearly reveal that the account of $U_{mathrm{O}-2p}$ has a significant impact on the properties of bulk ZnO, in particular the relaxed lattice constants, effective mass of charge carriers as well as the bandgap. For a set of validated values of $U_{mathrm{Zn}-3d}$ and $U_{mathrm{O}-2p}$ we demonstrate the appearance of a localized state associated with the oxygen vacancy positioned in the bandgap of the ZnO supercell. Our numerical findings suggest that the defect state is characterized by the highest overlap with the conduction band states as obtained in the calculations with no Hubbard-type correction included. We argue that the electronic density of the defect state is primarily determined by Zn atoms closest to the vacancy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا