ﻻ يوجد ملخص باللغة العربية
Using density functional theory calculations, ultrathin films of SrVO3(d1) and SrCrO3(d2) on SrTiO3 substrates have been studied as possible multiferroics. Although both are metallic in the bulk limit, they are found to be insulating as a result of orbital ordering driven by lattice distortions at the ultrathin limit. While the distortions in SrVO3 have a first-order Jahn-Teller origin, those in SrCrO3 are ferroelectric in nature. This route to ferroelectricity (FE) results in polarizations comparable with conventional ferroelectrics.
We report a new tetragonal ground-state for perovskite-structured PbCrO3 from DFT+U calculations, and explain its anomalously large volume. The new structure is stabilized due to orbital ordering of Cr-d in the presence of a large tetragonal crystal
Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large
The consideration of oxygen vacancies influence on the relaxors with perovskite structure was considered in the framework of Landau-Ginzburg-Devonshire phenomenological theory. The theory applicability for relaxors is based on the existence of some h
Multiferroics, where two or more ferroic order parameters coexist, is one of the hottest fields in condensed matter physics and materials science[1-9]. However, the coexistence of magnetism and conventional ferroelectricity is physically unfavoured[1
As the first well-documented example of the ferroelectric metal, LiOsO3 has received extensive research attention recently. Using density-functional calculations, we perform a systematic study for LiOsO3. We address the controversy about the depth of