ﻻ يوجد ملخص باللغة العربية
Directional modulation (DM), as an efficient secure transmission way, offers security through its directive property and is suitable for line-of-propagation (LoP) channels such as millimeter wave (mmWave) massive multiple-input multiple-output (MIMO), satellite communication, unmanned aerial vehicle (UAV), and smart transportation. If the direction angle of the desired received is known, the desired channel gain vector is obtainable. Thus, in advance, the DM transmitter knows the values of directional angles of desired user and eavesdropper, or their direction of arrival (DOAs) because the beamforming vector of confidential messages and artificial noise (AN) projection matrix is mainly determined by directional angles of desired user and eavesdropper. For a DM transceiver, working as a receiver, the first step is to measure the DOAs of desired user and eavesdropper. Then, in the second step, using the measured DOAs, the beamforming vector of confidential messages and AN projection matrix is designed. In this paper, we describe the DOA measurement methods, power allocation, and beamforming in DM networks. A machine learning-based DOA measurement method is proposed to make a substantial SR performance gain compared to single-snapshot measurement without machine learning for a given null-space projection beamforming scheme. However, for a conventional DM network, there still exists a serious secure issue: the eavesdropper moves inside the main beam of the desired user and may intercept the confidential messages intended to the desired users because the beamforming vector of confidential messages and AN projection matrix are only angle-dependence. To address this problem, we present a new concept of secure and precise transmission, where the transmit waveform has two-dimensional even three-dimensional dependence by using DM, random frequency selection, and phase alignment at DM transmitter.
Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin-
In this paper, we present a novel scenario for directional modulation (DM) networks with a full-duplex (FD) malicious attacker (Mallory), where Mallory can eavesdrop the confidential message from Alice to Bob and simultaneously interfere Bob by sendi
As a green and secure wireless transmission method, secure spatial modulation (SM) is becoming a hot research area. Its basic idea is to exploit both the index of activated transmit antenna and amplitude phase modulation signal to carry messages, imp
In this paper, based on directional modulation (DM), robust beamforming matrix design for sum secrecy rate maximization is investigated in multi-user systems. The base station (BS) is assumed to have the imperfect knowledge of the direction angle tow
In a directional modulation (DM) network, the issues of security and privacy have taken on an increasingly important role. Since the power allocation of confidential message and artificial noise will make a constructive effect on the system performan