ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-efficient Alternating Iterative Secure Structure of Maximizing Secrecy Rate for Directional Modulation Networks

75   0   0.0 ( 0 )
 نشر من قبل Jiayu Li
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In a directional modulation (DM) network, the issues of security and privacy have taken on an increasingly important role. Since the power allocation of confidential message and artificial noise will make a constructive effect on the system performance, it is important to jointly consider the relationship between the beamforming vectors and the power allocation (PA) factors. To maximize the secrecy rate (SR), an alternating iterative structure (AIS) between the beamforming and PA is proposed. With only two or three iterations, it can rapidly converge to its rate ceil. Simulation results indicate that the SR performance of proposed AIS is much better than the null-space projection (NSP) based PA strategy in the medium and large signal-to-noise ratio (SNR) regions, especially when the number of antennas at the DM transmitter is small.



قيم البحث

اقرأ أيضاً

Intelligent reflecting surface (IRS) is of low-cost and energy-efficiency and will be a promising technology for the future wireless communications like sixth generation. To address the problem of conventional directional modulation (DM) that Alice o nly transmits single confidential bit stream (CBS) to Bob with multiple antennas in a line-of-sight channel, IRS is proposed to create friendly multipaths for DM such that two CBSs can be transmitted from Alice to Bob. This will significantly enhance the secrecy rate (SR) of DM. To maximize the SR (Max-SR), a general non-convex optimization problem is formulated with the unit-modulus constraint of IRS phase-shift matrix (PSM), and the general alternating iterative (GAI) algorithm is proposed to jointly obtain the transmit beamforming vectors (TBVs) and PSM by alternately optimizing one and fixing another. To reduce its high complexity, a low-complexity iterative algorithm for Max-SR is proposed by placing the constraint of null-space (NS) on the TBVs, called NS projection (NSP). Here, each CBS is transmitted separately in the NSs of other CBS and AN channels. Simulation results show that the SRs of the proposed GAI and NSP can approximately double that of IRS-based DM with single CBS for massive IRS in the high signal-to-noise ratio region.
In this paper, based on directional modulation (DM), robust beamforming matrix design for sum secrecy rate maximization is investigated in multi-user systems. The base station (BS) is assumed to have the imperfect knowledge of the direction angle tow ard each eavesdropper, with the estimation error following the Von Mises distribution. To this end, a Von Mises distribution-Sum Secrecy Rate Maximization (VMD-SSRM) method is proposed to maximize the sum secrecy rate by employing semi-definite relaxation and first-order approximation based on Taylor expansion to solve the optimization problem. Then in order to optimize the sum secrecy rate in the case of the worst estimation error of direction angle toward each eavesdropper, we propose a maximum angle estimation error-SSRM (MAEE-SSRM) method. The optimization problem is constructed based on the upper and lower bounds of the estimated eavesdropping channel related coefficient and then solved by the change of the variable method. Simulation results show that our two proposed methods have better sum secrecy rate than zero-forcing (ZF) method and signal-to-leakage-and-noise ratio (SLNR) method. Furthermore, the sum secrecy rate performance of our VMD-SSRM method is better than that of our MAEE-SSRM method.
79 - Xiaobo Zhou , Jun Li , Feng Shu 2018
Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin- level optimization problem and solved by a one-dimensional (1D) search and semidefinite relaxation (SDR) technique. Then in order to reduce the search complexity, we formulate an optimization problem based on maximizing the signal-to-leakage-AN-noise-ratio (Max-SLANR) criterion, and transform it into a SDR problem. Additionally, the relaxation is proved to be tight according to the classic Karush-Kuhn-Tucker (KKT) conditions. Finally, to reduce the computational complexity, a successive convex approximation (SCA) scheme is proposed to find a near-optimal solution. The complexity of the SCA scheme is much lower than that of the SRM and the Max-SLANR schemes. Simulation results demonstrate that the performance of the SCA scheme is very close to that of the SRM scheme in terms of its secrecy rate and bit error rate (BER), but much better than that of the zero forcing (ZF) scheme.
In this paper, we propose a physical layer security scheme that exploits a novel index modulation (IM) technique for coordinate interleaved orthogonal designs (CIOD). Utilizing the diversity gain of CIOD transmission, the proposed scheme, named CIOD- IM, provides an improved spectral efficiency by means of IM. In order to provide a satisfactory secrecy rate, we design a particular artificial noise matrix, which does not affect the performance of the legitimate receiver, while deteriorating the performance of the eavesdropper. We derive expressions of the ergodic secrecy rate and the theoretical bit error rate upper bound. In addition, we analyze the case of imperfect channel estimation by taking practical concerns into consideration. It is shown via computer simulations that the proposed scheme outperforms the existing IM-based schemes and might be a candidate for future secure communication systems.
Employing reconfigurable intelligent surfaces (RIS) is emerging as a game-changer candidate, thanks to their unique capabilities in improving the power efficiency and supporting the ubiquity of future wireless communication systems. Conventionally, a wireless network design has been limited to the communicating end points, i.e., the transmitter and the receiver. In general, we take advantage of the imposed channel state knowledge to manipulate the transmitted signal and to improve the detection quality at the receiver. With the aid of RISs, and to some extent, the propagation channel has become a part of the design problem. In this paper, we consider a single-input single-output cooperative network and investigate the effect of using RISs in enhancing the physical layer security of the system. Specifically, we formulate an optimization problem to study the effectiveness of the RIS in improving the system secrecy by introducing a weighted variant of the secrecy capacity definition. Numerical simulations are provided to show the design trade-offs and to present the superiority of RIS-assisted networks over the conventional ones in terms of the systems secrecy performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا