ﻻ يوجد ملخص باللغة العربية
In this paper, we present a novel scenario for directional modulation (DM) networks with a full-duplex (FD) malicious attacker (Mallory), where Mallory can eavesdrop the confidential message from Alice to Bob and simultaneously interfere Bob by sending a jamming signal. Considering that the jamming plus noise at Bob is colored, an enhanced receive beamforming (RBF), whitening-filter-based maximum ratio combining (MRC) (WFMRC), is proposed. Subsequently, two RBFs of maximizing the secrecy rate (Max-SR) and minimum mean square error (MMSE) are presented to show the same performance as WFMRC. To reduce the computational complexity of conventional MMSE, a low-complexity MMSE is also proposed. Eventually, to completely remove the jamming signal from Mallory and transform the residual interference plus noise to a white one, a new RBF, null-space projection (NSP) based maximizing WF receive power, called NSP-based Max-WFRP, is also proposed. From simulation results, we find that the proposed Max-SR, WFMRC, and low-complexity MMSE have the same SR performance as conventional MMSE, and achieve the best performance while the proposed NSP-based Max-WFRP performs better than MRC in the medium and high signal-to-noise ratio regions. Due to its low-complexity,the proposed low-complexity MMSE is very attractive. More important, the proposed methods are robust to the change in malicious jamming power compared to conventional MRC.
Secure wireless information and power transfer based on directional modulation is conceived for amplify-and-forward (AF) relaying networks. Explicitly, we first formulate a secrecy rate maximization (SRM) problem, which can be decomposed into a twin-
In this paper, we make an investigation of receive antenna selection (RAS) strategies in the secure pre-coding aided spatial modulation (PSM) system with the aid of artificial noise. Due to a lack of the closed-form expression for secrecy rate (SR) i
We assume a full-duplex (FD) cooperative network subject to hostile attacks and undergoing composite fading channels. We focus on two scenarios: textit{a)} the transmitter has full CSI, for which we derive closed-form expressions for the textit{avera
Directional modulation (DM), as an efficient secure transmission way, offers security through its directive property and is suitable for line-of-propagation (LoP) channels such as millimeter wave (mmWave) massive multiple-input multiple-output (MIMO)
Medium-scale or large-scale receive antenna array with digital beamforming can be employed at receiver to make a significant interference reduction, but leads to expensive cost and high complexity of the RF-chain circuit. To deal with this issue, a c