ﻻ يوجد ملخص باللغة العربية
There have been significant recent advances in realizing bandstructures with geometrical and topological features in experiments on cold atomic gases. We provide an overview of these developments, beginning with a summary of the key concepts of geometry and topology for Bloch bands. We describe the different methods that have been used to generate these novel bandstructures for cold atoms, as well as the physical observables that have allowed their characterization. We focus on the physical principles that underlie the different experimental approaches, providing a conceptual framework within which to view these developments. However, we also describe how specific experimental implementations can influence physical properties. Moving beyond single-particle effects, we describe the forms of inter-particle interactions that emerge when atoms are subjected to these energy bands, and some of the many-body phases that may be sought in future experiments.
Ultracold atom research presents many avenues to study problems at the forefront of physics. Due to their unprecedented controllability, these systems are ideally suited to explore new exotic states of matter, which is one of the key driving elements
We propose a scheme to dynamically synthesize a space-periodic effective magnetic field for neutral atoms by time-periodic magnetic field pulses. When atomic spin adiabatically follows the direction of the effective magnetic field, an adiabatic scala
Cold atoms with laser-induced spin-orbit (SO) interactions provide promising platforms to explore novel quantum physics, in particular the exotic topological phases, beyond natural conditions of solids. The past several years have witnessed important
Sixty years ago, Karplus and Luttinger pointed out that quantum particles moving on a lattice could acquire an anomalous transverse velocity in response to a force, providing an explanation for the unusual Hall effect in ferromagnetic metals. A strik
Coherent control via periodic modulation, also known as Floquet engineering, has emerged as a powerful experimental method for the realization of novel quantum systems with exotic properties. In particular, it has been employed to study topological p