ﻻ يوجد ملخص باللغة العربية
Coherent control via periodic modulation, also known as Floquet engineering, has emerged as a powerful experimental method for the realization of novel quantum systems with exotic properties. In particular, it has been employed to study topological phenomena in a variety of different platforms. In driven systems, the topological properties of the quasienergy bands can often be determined by standard topological invariants, such as Chern numbers, which are commonly used in static systems. However, due to the periodic nature of the quasienergy spectrum, this topological description is incomplete and new invariants are required to fully capture the topological properties of these driven settings. Most prominently, there exist two-dimensional anomalous Floquet systems that exhibit robust chiral edge modes, despite all Chern numbers are equal to zero. Here, we realize such a system with bosonic atoms in a periodically-driven honeycomb lattice and infer the complete set of topological invariants from energy gap measurements and local Hall deflections.
The concept of valence bond resonance plays a fundamental role in the theory of the chemical bond and is believed to lie at the heart of many-body quantum physical phenomena. Here we show direct experimental evidence of a time-resolved valence bond q
In systems of ultracold atoms, pairwise interactions are resonantly enhanced by the application of an oscillating magnetic field that is parallel to the spin-quantization axis of the atoms. The resonance occurs when the frequency of the applied field
Ultracold atom research presents many avenues to study problems at the forefront of physics. Due to their unprecedented controllability, these systems are ideally suited to explore new exotic states of matter, which is one of the key driving elements
We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of
Open physical systems with balanced loss and gain, described by non-Hermitian parity-time ($mathcal{PT}$) reflection symmetric Hamiltonians, exhibit a transition which could engenders modes that exponentially decay or grow with time and thus spontane