ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Insulators with Ultracold Atoms

169   0   0.0 ( 0 )
 نشر من قبل Erhai Zhao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultracold atom research presents many avenues to study problems at the forefront of physics. Due to their unprecedented controllability, these systems are ideally suited to explore new exotic states of matter, which is one of the key driving elements of the condensed matter research. One such topic of considerable importance is topological insulators, materials that are insulating in the interior but conduct along the edges. Quantum Hall and its close cousin Quantum Spin Hall states belong to the family of these exotic states and are the subject of this chapter.



قيم البحث

اقرأ أيضاً

Cold atoms with laser-induced spin-orbit (SO) interactions provide promising platforms to explore novel quantum physics, in particular the exotic topological phases, beyond natural conditions of solids. The past several years have witnessed important progresses in both theory and experiment in the study of SO coupling and novel quantum states for ultracold atoms. Here we review the physics of the SO coupled quantum gases, focusing on the latest theoretical and experimental progresses of realizing SO couplings beyond one-dimension (1D), and the further investigation of novel topological quantum phases in such systems, including the topological insulating phases and topological superfluids. A pedagogical introduction to the SO coupling for ultracold atoms and topological quantum phases is presented. We show that the so-called optical Raman lattice schemes, which combine the creation of the conventional optical lattice and Raman lattice with topological stability, can provide minimal methods with high experimental feasibility to realize 1D to 3D SO couplings. The optical Raman lattices exhibit novel intrinsic symmetries, which enable the natural realization of topological phases belonging to different symmetry classes, with the topology being detectable through minimal measurement strategies. We introduce how the non-Abelian Majorana modes emerge in the SO coupled superfluid phases which can be topologically nontrivial or trivial, for which a few fundamental theorems are presented and discussed. The experimental schemes for achieving non-Abelian superfluid phases are given. Finally, we point out the future important issues in this rapidly growing research field.
This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems, which produced both fascinating physics findings and exciting opportunities for applications. Among the physical systems that have been considered to realize and probe these intriguing phases, ultracold atoms become promising platforms due to their high flexibility and controllability. Quantum simulation of topological phases with cold atomic gases is a rapidly evolving field, and recent theoretical and experimental developments reveal that some toy models originally proposed in condensed matter physics have been realized with this artificial quantum system. The purpose of this article is to introduce these developments. The article begins with a tutorial review of topological invariants and the methods to control parameters in the Hamiltonians of neutral atoms. Next, topological quantum phases in optical lattices are introduced in some detail, especially several celebrated models, such as the Su-Schrieffer-Heeger model, the Hofstadter-Harper model, the Haldane model and the Kane-Mele model. The theoretical proposals and experimental implementations of these models are discussed. Notably, many of these models cannot be directly realized in conventional solid-state experiments. The newly developed methods for probing the intrinsic properties of the topological phases in cold atom systems are also reviewed. Finally, some topological phases with cold atoms in the continuum and in the presence of interactions are discussed, and an outlook on future work is given.
There have been significant recent advances in realizing bandstructures with geometrical and topological features in experiments on cold atomic gases. We provide an overview of these developments, beginning with a summary of the key concepts of geome try and topology for Bloch bands. We describe the different methods that have been used to generate these novel bandstructures for cold atoms, as well as the physical observables that have allowed their characterization. We focus on the physical principles that underlie the different experimental approaches, providing a conceptual framework within which to view these developments. However, we also describe how specific experimental implementations can influence physical properties. Moving beyond single-particle effects, we describe the forms of inter-particle interactions that emerge when atoms are subjected to these energy bands, and some of the many-body phases that may be sought in future experiments.
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest leng th scales, our universe is ruled by gravity, whose gauge structure suggests the existence of a particle - the graviton - that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms feeling laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials - both Abelian and non-Abelian - in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.
Since the discovery of topological insulators, many topological phases have been predicted and realized in a range of different systems, providing both fascinating physics and exciting opportunities for devices. And although new materials are being d eveloped and explored all the time, the prospects for probing exotic topological phases would be greatly enhanced if they could be realized in systems that were easily tuned. The flexibility offered by ultracold atoms could provide such a platform. Here, we review the tools available for creating topological states using ultracold atoms in optical lattices, give an overview of the theoretical and experimental advances and provide an outlook towards realizing strongly correlated topological phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا