ﻻ يوجد ملخص باللغة العربية
In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function $G(u)$, associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of $G(u)$ calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.
In this work, we consider a model of a subsystem interacting with a reservoir and study dynamics of entanglement assuming that the overall time-evolution is governed by non-integrable Hamiltonians. We also compare to an ensemble of Integrable Hamilto
The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduce
Correlations in quantum systems exhibit a rich phenomenology under the effect of various sources of noise. We investigate theoretically and experimentally the dynamics of quantum correlations and their classical counterparts in two nuclear magnetic r
We simulate numerically the dynamics of strongly correlated bosons in a two-leg ladder subject to a time-dependent energy bias between the two chains. When all atoms are initially in the leg with higher energy, we find a drastic reduction of the inte
We review the use of an external auxiliary detector for measuring the full distribution of the work performed on or extracted from a quantum system during a unitary thermodynamic process. We first illustrate two paradigmatic schemes that allow one to