ﻻ يوجد ملخص باللغة العربية
The entanglement production in bipartite quantum systems is studied for initially unentangled product eigenstates of the subsystems, which are assumed to be quantum chaotic. Based on a perturbative computation of the Schmidt eigenvalues of the reduced density matrix, explicit expressions for the time-dependence of entanglement entropies, including the von Neumann entropy, are given. An appropriate re-scaling of time and the entropies by their saturation values leads a universal curve, independent of the interaction. The extension to the non-perturbative regime is performed using a recursively embedded perturbation theory to produce the full transition and the saturation values. The analytical results are found to be in good agreement with numerical results for random matrix computations and a dynamical system given by a pair of coupled kicked rotors.
In most realistic models for quantum chaotic systems, the Hamiltonian matrices in unperturbed bases have a sparse structure. We study correlations in eigenfunctions of such systems and derive explicit expressions for some of the correlation functions
The {it exchange} interaction arising from the particle indistinguishability is of central importance to physics of many-particle quantum systems. Here we study analytically the dynamical generation of quantum entanglement induced by this interaction
Typical eigenstates of quantum systems, whose classical limit is chaotic, are well approximated as random states. Corresponding eigenvalue spectra is modeled through appropriate ensemble of random matrix theory. However, a small subset of states viol
We study the growth of entanglement in quantum systems with a conserved quantity exhibiting diffusive transport, focusing on how initial inhomogeneities are imprinted on the entropy. We propose a simple effective model, which generalizes the minimal
In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version o