ترغب بنشر مسار تعليمي؟ اضغط هنا

Entanglement Dynamics of Random GUE Hamiltonians

102   0   0.0 ( 0 )
 نشر من قبل Daniel Chernowitz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we consider a model of a subsystem interacting with a reservoir and study dynamics of entanglement assuming that the overall time-evolution is governed by non-integrable Hamiltonians. We also compare to an ensemble of Integrable Hamiltonians. To do this, we make use of unitary invariant ensembles of random matrices with either Wigner-Dyson or Poissonian distributions of energy. Using the theory of Weingarten functions, we derive universal average time evolution of the reduced density matrix and the purity and compare these results with several physical Hamiltonians: randomiz



قيم البحث

اقرأ أيضاً

In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version o f the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function $G(u)$, associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of $G(u)$ calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.
We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displaying the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.
We study the growth of genuine multipartite entanglement in random quantum circuit models, which include random unitary circuit models and the random Clifford circuit. We find that for the random Clifford circuit, the growth of multipartite entanglem ent remains slower in comparison to the random unitary case. However, the final saturation value of multipartite entanglement is almost the same in both cases. The behavior is then compared to the genuine multipartite entanglement obtained in random matrix product states with a moderately high bond dimension. We then relate the behavior of multipartite entanglement to other global properties of the system, viz. the delocalization of the many-body wavefunctions in Hilbert space. Along with this, we analyze the robustness of such highly entangled quantum states obtained through random unitary dynamics under weak measurements.
Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical sinc e entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of hidden entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.
90 - Yichen Huang 2020
My previous work [arXiv:1902.00977] studied the dynamics of Renyi entanglement entropy $R_alpha$ in local quantum circuits with charge conservation. Initializing the system in a random product state, it was proved that $R_alpha$ with Renyi index $alp ha>1$ grows no faster than diffusively (up to a sublogarithmic correction) if charge transport is not faster than diffusive. The proof was given only for qubit or spin-$1/2$ systems. In this note, I extend the proof to qudit systems, i.e., spin systems with local dimension $dge2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا