ﻻ يوجد ملخص باللغة العربية
The Liquid Argon Time Projection Chambers (LArTPCs) are a choice for the next generation of large neutrino detectors due to their optimal performance in particle tracking and calorimetry. The detection of Argon scintillation light plays a crucial role in the event reconstruction as well as the time reference for non-beam physics such as supernovae neutrino detection and baryon number violation studies. In this contribution, we present the current R&D work on the ARAPUCA (Argon R&D Advanced Program at UNICAMP), a light trap device to enhance Ar scintillation light collection and thus the overall performance of LArTPCs. The ARAPUCA working principle is based on a suitable combination of dichroic filters and wavelength shifters to achieve a high efficiency in light collection. We discuss the operational principles, the last results of laboratory tests and the application of the ARAPUCA as the alternative photon detection system in the protoDUNE detector.
In the Fall of 2017, two photon detector designs for the Deep Underground Neutrino Experiment (DUNE) Far Detector were installed and tested in the TallBo liquid argon (LAr) cryostat at the Proton Assembly (PAB) facility, Fermilab. The designs include
In the Deep Underground Neutrino Experiment (DUNE), the VUV LAr luminescence is collected by light trap devices named X-Arapuca, sizing (480x93) mm2. Six thousand of these units will be deployed in the first DUNE ten kiloton far detector module. In t
Simulations of photon propagation in scintillation detectors were performed with the aim to find the optimal scintillator geometry, surface treatment, and shape of external reflector in order to achieve maximum light collection efficiency for detecto
The ARAPUCA is a novel concept for liquid argon scintillation light detection which has been proposed for the photon detection system of the Deep Underground Neutrino Experiment. The test in liquid argon of one of the first ARAPUCA prototypes is pres
Low noise CCDs fully-depleted up to 675 micrometers have been identified as a unique tool for Dark Matter searches and low energy neutrino physics. The charge collection efficiency (CCE) for these detectors is a critical parameter for the performance