ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge collection efficiency in back-illuminated Charge-Coupled Devices

98   0   0.0 ( 0 )
 نشر من قبل Juan Estrada
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low noise CCDs fully-depleted up to 675 micrometers have been identified as a unique tool for Dark Matter searches and low energy neutrino physics. The charge collection efficiency (CCE) for these detectors is a critical parameter for the performance of future experiments. We present here a new technique to characterize CCE in back-illuminated CCDs based on soft X-rays. This technique is used to characterize two different detector designs. The results demonstrate the importance of the backside processing for detection near threshold, showing that a recombination layer of a few microns significantly distorts the low energy spectrum. The studies demonstrate that the region of partial charge collection can be reduced to less than 1 micrometer thickness with adequate backside processing.

قيم البحث

اقرأ أيضاً

The Ion Beam Induced Charge Collection (IBIC) technique was used to map the charge collection efficiency (CCE) of a 4H-SiC photodetector with coplanar interdigitated Schottky barrier electrodes and a common ohmic contact on the back side. IBIC maps w ere obtained using focused proton beams with energies of 0.9 MeV and 1.5 MeV, at different bias voltages and different sensitive electrode configurations (charge collection at the top Schottky or at the back Ohmic contact). These different experimental conditions have been modeled using a two dimensional finite element code to solve the adjoint carrier continuity equations and the results obtained have been compared with experimental results. The excellent consistency between the simulated and experimental CCE maps allows an exhaustive interpretation of the charge collection mechanisms occurring in pixellated or strip detectors.
A detailed study of charge collection efficiency has been performed on the Silicon Drift Detectors (SDD) of the ALICE experiment. Three different methods to study the collected charge as a function of the drift time have been implemented. The first a pproach consists in measuring the charge at different injection distances moving an infrared laser by means of micrometric step motors. The second method is based on the measurement of the charge injected by the laser at fixed drift distance and varying the drift field, thus changing the drift time. In the last method, the measurement of the charge deposited by atmospheric muons is used to study the charge collection efficiency as a function of the drift time. The three methods gave consistent results and indicated that no charge loss during the drift is observed for the sensor types used in 99% of the SDD modules mounted on the ALICE Inner Tracking System. The atmospheric muons have also been used to test the effect of the zero-suppression applied to reduce the data size by erasing the counts in cells not passing the thresholds for noise removal. As expected, the zero suppression introduces a dependence of the reconstructed charge as a function of drift time because it cuts the signal in the tails of the electron clouds enlarged by diffusion effects. These measurements allowed also to validate the correction for this effect extracted from detailed Monte Carlo simulations of the detector response and applied in the offline data reconstruction.
This article details the potential for using Charge Coupled Devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei. The detection of neutrinos through this standard model process has not been accessible because of the small energy deposited in such interactions with the detector nuclei. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The devices we discuss can be operated at a threshold of approximately 30 eV, making them ideal for observing this signal. For example, the number of coherent scattering events expected on a 52 gram CCD array located next to a power nuclear reactor is estimated as approximately 626 events/year. The results of our study show that detection at a confidence level of 99% can be reached within three months for this kind of detector array.
89 - E. Miyata , M. Miki , J. Hiraga 2002
We have employed a mesh experiment for back-illuminated (BI) CCDs. BI CCDs possess the same structure to those of FI CCDs. Since X-ray photons enter from the back surface of the CCD, a primary charge cloud is formed far from the electrodes. The prima ry charge cloud expands through diffusion process until it reaches the potential well that is just below the electrodes. Therefore, the diffusion time for the charge cloud produced is longer than that in the FI CCD, resulting a larger charge cloud shape expected. The mesh experiment enables us to specify the X-ray point of interaction with a subpixel resolution. We then have measured a charge cloud shape produced in the BI CCD. We found that there are two components of the charge cloud shape having different size: a narrow component and a broad component. The size of the narrow component is $2.8-5.7 mu$m in unit of a standard deviation and strongly depends on the attenuation length in Si of incident X-rays. The shorter the attenuation length of X-rays is, the larger the charge cloud becomes. This result is qualitatively consistent with a diffusion model inside the CCD. On the other hand, the size of the broad component is roughly constant of $simeq 13 mu$m and does not depend on X-ray energies. Judging from the design value of the CCD and the fraction of each component, we conclude that the narrow component is originated in the depletion region whereas the broad component is in the field-free region.
We have modeled laser-induced transient current waveforms in radiation coplanar grid detectors. Poissons equation has been solved by finite element method and currents induced by photo-generated charge were obtained using Shockley-Ramo theorem. The s pectral response on a radiation flux has been modeled by Monte-Carlo simulations. We show 10$times$ improved spectral resolution of coplanar grid detector using differential signal sensing. We model the current waveform dependence on doping, depletion width, diffusion and detector shielding and their mutual dependence is discussed in terms of detector optimization. The numerical simulations are successfully compared to experimental data and further model simplifications are proposed. The space charge below electrodes and a non-homogeneous electric field on a coplanar grid anode are found to be the dominant contributions to laser-induced transient current waveforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا