ﻻ يوجد ملخص باللغة العربية
Metasurfaces exploit the ability to engineer the optical phase, amplitude and polarization at subwavelength dimensions providing unprecedented control of light. The realization of the all dielectric approach to metasurfaces has led to the demonstration of extensive flat optical elements and functionalities with low losses. However, to reach their ultimate potential, metasurfaces must move beyond static operation and incorporate active tunability and reconfigurable functions. The central challenge is achieving large tunability in subwavelength resonator elements which require large optical effects in response to external stimuli. Here we study the thermal tunability of high-index silicon and germanium semiconductor resonators over a large temperature range. We demonstrate thermal tuning of Mie resonances due to the normal positive thermo-optic effect (dn/dT >0) over a wide infrared range. We show that at higher temperatures and long wavelengths the sign of the thermo-optic coefficient is reversed (dn/dT<0) culminating in a negative induced index due to thermal excitation of free carriers. We also demonstrate the tuning of high order Mie resonances by several linewidths with a temperature swing of {Delta}T<100K. Finally, we exploit the larger thermo-optic coefficient at NIR wavelengths in Si metasurfaces to realize optical switching and tunable metafilters.
We presented a detailed experimental study on lasing in GaAs microstadium with various shapes. Unlike most deformed microcavities, the lasing threshold varies non-monotonically with the major-to-minor-axis ratio of the stadium. Under spatially unifor
We introduce the concept of controlling the nonlinear response of the metamaterial by altering its internal structure. We experimentally demonstrate tuning of the nonlinear response of two coupled split-ring resonators by changing their mutual positi
Photons typically do not contribute to thermal transport within a solid due to their low energy density and tendency to be quickly absorbed. We propose a practical material system - infrared plasmonic resonators embedded in a semiconductor nanowire -
With the emergence of new photonic and plasmonic materials with optimized properties as well as advanced nanofabrication techniques, nanophotonic devices are now capable of providing solutions to global challenges in energy conversion, information te
Aluminum nitride has been shown to possess both strong Kerr nonlinearity and electro-optic Pockels effect. By combining these two effects, here we demonstrate on-chip reversible on/off switching of the optical frequency comb generated by an aluminum