ﻻ يوجد ملخص باللغة العربية
Photons typically do not contribute to thermal transport within a solid due to their low energy density and tendency to be quickly absorbed. We propose a practical material system - infrared plasmonic resonators embedded in a semiconductor nanowire - that leverages near-field electromagnetic coupling to achieve photonic thermal transport comparable to the electronic and phononic contributions. We analytically show photonic thermal conductivities up to about 1 W m-1 K-1 for 10 nm diameter Si and InAs nanowires containing repeated resonators at 500 K. The nanowire system outperforms plasmonic particles in isotropic environments and presents a pathway for photonic thermal transport to exceed that of phonons and electrons.
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems
Doping is a common route to reducing nanowire transistor on-resistance but has limits. High doping level gives significant loss in gate performance and ultimately complete gate failure. We show that electrolyte gating remains effective even when the
Many present and future applications of superconductivity would benefit from electrostatic control of carrier density and tunneling rates, the hallmark of semiconductor devices. One particularly exciting application is the realization of topological
Kitaev chain is a theoretical model of a one-dimensional topological superconductor with Majorana zero modes at the two ends of the chain. With the goal of emulating this model, we build a chain of three quantum dots in a semiconductor nanowire. We o
In this paper we solve the Cattaneo-Vernotte Equation for a periodic heterostructure made of alternate layers of different materials. The solutions describe thermal waves traveling in a periodic system, and it allows us to introduce the concept of th