ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine-Learning-Assisted Metasurface Design for High-Efficiency Thermal Emitter Optimization

72   0   0.0 ( 0 )
 نشر من قبل Zhaxylyk Kudyshev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the emergence of new photonic and plasmonic materials with optimized properties as well as advanced nanofabrication techniques, nanophotonic devices are now capable of providing solutions to global challenges in energy conversion, information technologies, chemical/biological sensing, space exploration, quantum computing, and secure communication. Addressing grand challenges poses inherently complex, multi-disciplinary problems with a manifold of stringent constraints in conjunction with the required systems performance. Conventional optimization techniques have long been utilized as powerful tools to address multi-constrained design tasks. One example is so-called topology optimization that has emerged as a highly successful architect for the advanced design of non-intuitive photonic structures. Despite many advantages, this technique requires substantial computational resources and thus has very limited applicability to highly constrained optimization problems within high-dimensions parametric space. In our approach, we merge the topology optimization method with machine learning algorithms such as adversarial autoencoders and show substantial improvement of the optimization process by providing unparalleled control of the compact design space representations. By enabling efficient, global optimization searches within complex landscapes, the proposed compact hyperparametric representations could become crucial for multi-constrained problems. The proposed approach could enable a much broader scope of the optimal designs and data-driven materials synthesis that goes beyond photonic and optoelectronic applications.

قيم البحث

اقرأ أيضاً

Over the past decade, artificially engineered optical materials and nanostructured thin films have revolutionized the area of photonics by employing novel concepts of metamaterials and metasurfaces where spatially varying structures yield tailorable, by design effective electromagnetic properties. The current state-of-the-art approach to designing and optimizing such structures relies heavily on simplistic, intuitive shapes for their unit cells or meta-atoms. Such approach can not provide the global solution to a complex optimization problem where both meta-atoms shape, in-plane geometry, out-of-plane architecture, and constituent materials have to be properly chosen to yield the maximum performance. In this work, we present a novel machine-learning-assisted global optimization framework for photonic meta-devices design. We demonstrate that using an adversarial autoencoder coupled with a metaheuristic optimization framework significantly enhances the optimization search efficiency of the meta-devices configurations with complex topologies. We showcase the concept of physics-driven compressed design space engineering that introduces advanced regularization into the compressed space of adversarial autoencoder based on the optical responses of the devices. Beyond the significant advancement of the global optimization schemes, our approach can assist in gaining comprehensive design intuition by revealing the underlying physics of the optical performance of meta-devices with complex topologies and material compositions.
In this paper, we propose a machine-learning assisted modeling framework in design-technology co-optimization (DTCO) flow. Neural network (NN) based surrogate model is used as an alternative of compact model of new devices without prior knowledge of device physics to predict device and circuit electrical characteristics. This modeling framework is demonstrated and verified in FinFET with high predicted accuracy in device and circuit level. Details about the data handling and prediction results are discussed. Moreover, same framework is applied to new mechanism device tunnel FET (TFET) to predict device and circuit characteristics. This work provides new modeling method for DTCO flow.
We present a method for improving the efficiency and user experience of freeform illumination design with machine learning. By utilizing orthogonal polynomials to interface with artificial neural networks, we are able to generalize relationships betw een freeform surface shapes and design parameters. Then, by training the network to generalize the relationship between high-level design goals and final performance, we were able to transform what is traditionally a difficult and computationally intensive problem into a compact, user friendly form. The potential of the proposed method is demonstrated through the design of uniform square patterns from off-axis positions and rectangular patterns of tuneable aspect ratios and distances from the target.
Classification of features in a scene typically requires conversion of the incoming photonic field into the electronic domain. Recently, an alternative approach has emerged whereby passive structured materials can perform classification tasks by dire ctly using free-space propagation and diffraction of light. In this manuscript, we present a theoretical and computational study of such systems and establish the basic features that govern their performance. We show that system architecture, material structure, and input light field are intertwined and need to be co-designed to maximize classification accuracy. Our simulations show that a single layer metasurface can achieve classification accuracy better than conventional linear classifiers, with an order of magnitude fewer diffractive features than previously reported. For a wavelength {lambda}, single layer metasurfaces of size with aperture density achieve ~96% testing accuracy on the MNIST dataset, for an optimized distance ~ to the output plane. This is enabled by an intrinsic nonlinearity in photodetection, despite the use of linear optical metamaterials. Furthermore, we find that once the system is optimized, the number of diffractive features is the main determinant of classification performance. The slow asymptotic scaling with the number of apertures suggests a reason why such systems may benefit from multiple layer designs. Finally, we show a trade-off between the number of apertures and fabrication noise.
Finding amorphous polymers with higher thermal conductivity is important, as they are ubiquitous in heat transfer applications. With recent progress in material informatics, machine learning approaches have been increasingly adopted for finding or de signing materials with desired properties. However, relatively limited effort has been put into finding thermally conductive polymers using machine learning, mainly due to the lack of polymer thermal conductivity databases with reasonable data volume. In this work, we combine high-throughput molecular dynamics (MD) simulations and machine learning to explore polymers with relatively high thermal conductivity (> 0.300 W/m-K). We first randomly select 365 polymers from the existing PolyInfo database and calculate their thermal conductivity using MD simulations. The data are then employed to train a machine learning regression model to quantify the structure-thermal conductivity relation, which is further leveraged to screen polymer candidates in the PolyInfo database with thermal conductivity > 0.300 W/m-K. 133 polymers with MD-calculated thermal conductivity above this threshold are eventually identified. Polymers with a wide range of thermal conductivity values are selected for re-calculation under different simulation conditions, and those polymers found with thermal conductivity above 0.300 W/m-K are mostly calculated to maintain values above this threshold despite fluctuation in the exact values. A classification model is also constructed, and similar results were obtained compared to the regression model in predicting polymers with thermal conductivity above or below 0.300 W/m-K. The strategy and results from this work may contribute to automating the design of polymers with high thermal conductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا