ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass determination of the 1:3:5 near-resonant planets transiting GJ 9827 (K2-135)

89   0   0.0 ( 0 )
 نشر من قبل Jorge Prieto-Arranz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. GJ 9827 (K2-135) has recently been found to host a tightly packed system consisting of three transiting small planets whose orbital periods of 1.2, 3.6, and 6.2 days are near the 1:3:5 ratio. GJ 9827 hosts the nearest planetary system (d = $30.32pm1.62$ pc) detected by Kepler and K2 . Its brightness (V = 10.35 mag) makes the star an ideal target for detailed studies of the properties of its planets. Results. We find that GJ 9827 b has a mass of $M_mathrm{b}=3.74^{+0.50}_{-0.48}$ $M_oplus$ and a radius of $R_mathrm{b}=1.62^{+0.17}_{-0.16}$ $R_oplus$, yielding a mean density of $rho_mathrm{b} = 4.81^{+1.97}_{-1.33}$ g cm$^{-3}$. GJ 9827 c has a mass of $M_mathrm{c}=1.47^{+0.59}_{-0.58}$ $M_oplus$, radius of $R_mathrm{c}=1.27^{+0.13}_{-0.13}$ $R_oplus$, and a mean density of $rho_mathrm{c}= 3.87^{+2.38}_{-1.71}$ g cm$^{-3}$. For GJ 9827 d we derive $M_mathrm{d}=2.38^{+0.71}_{-0.69}$ $M_oplus$, $R_mathrm{d}=2.09^{+0.22}_{-0.21}$ $R_oplus$, and $rho_mathrm{d}= 1.42^{+0.75}_{-0.52}$ g cm$^{-3}$. Conclusions. GJ 9827 is one of the few known transiting planetary systems for which the masses of all planets have been determined with a precision better than 30%. This system is particularly interesting because all three planets are close to the limit between super-Earths and mini-Neptunes. We also find that the planetary bulk compositions are compatible with a scenario where all three planets formed with similar core/atmosphere compositions, and we speculate that while GJ 9827 b and GJ 9827 c lost their atmospheric envelopes, GJ 9827 d maintained its atmosphere, owing to the much lower stellar irradiation. This makes GJ 9827 one of the very few systems where the dynamical evolution and the atmospheric escape can be studied in detail for all planets, helping us to understand how compact systems form and evolve.



قيم البحث

اقرأ أيضاً

We report on the discovery of three transiting planets around GJ~9827. The planets have radii of 1.75$_{-0.12}^{+0.11 }$, 1.36$_{- 0.09 }^{+ 0.09}$, and 2.10$_{- 0.15 }^{+ 0.15 }$~R$_{oplus}$, and periods of 1.20896, 3.6480, and 6.2014 days, respecti vely. The detection was made in Campaign 12 observations as part of our K2 survey of nearby stars. GJ~9827 is a $V = 10.39$~mag K6V star at distance of 30.3 parsecs and the nearest star to be found hosting planets by Kepler and K2. The radial velocity follow-up, high resolution imaging, and detection of multiple transiting objects near commensurability drastically reduce the false positive probability. The orbital periods of GJ~9827~b, c and d planets are very close to the 1:3:5 mean motion resonance. Our preliminary analysis shows that GJ~9827 planets are excellent candidates for atmospheric observations. Besides, the planetary radii span both sides of the rocky and gaseous divide, hence the system will be an asset in expanding our understanding of the threshold.
Photometry of stars from the K2 extension of NASAs Kepler mission is afflicted by systematic effects caused by small (few-pixel) drifts in the telescope pointing and other spacecraft issues. We present a method for searching K2 light curves for evide nce of exoplanets by simultaneously fitting for these systematics and the transit signals of interest. This method is more computationally expensive than standard search algorithms but we demonstrate that it can be efficiently implemented and used to discover transit signals. We apply this method to the full Campaign 1 dataset and report a list of 36 planet candidates transiting 31 stars, along with an analysis of the pipeline performance and detection efficiency based on artificial signal injections and recoveries. For all planet candidates, we present posterior distributions on the properties of each system based strictly on the transit observables.
We present a uniform analysis of 155 candidates from the second year of NASAs $K2$ mission (Campaigns 5-8), yielding 60 statistically validated planets spanning a range of properties, with median values of $R_p$ = 2.5 $R_oplus$, $P$ = 7.1 d, $T_mathr m{eq}$ = 811 K, and $J$ = 11.3 mag. The sample includes 24 planets in 11 multi-planetary systems, as well as 18 false positives, and 77 remaining planet candidates. Of particular interest are 18 planets smaller than 2 $R_oplus$, five orbiting stars brighter than $J$ = 10 mag, and a system of four small planets orbiting the solar-type star EPIC 212157262. We compute planetary transit parameters and false positive probabilities using a robust statistical framework and present a complete analysis incorporating the results of an intensive campaign of high resolution imaging and spectroscopic observations. This work brings the $K2$ yield to over 360 planets, and by extrapolation we expect that $K2$ will have discovered $sim$600 planets before the expected depletion of its on-board fuel in late 2018.
The prime Kepler mission revealed that small planets (<4 R_earth) are common, especially around low-mass M dwarfs. K2, the re-purposed Kepler mission, continues this exploration of small planets around small stars. Here we combine K2 photometry with spectroscopy, adaptive optics imaging, and archival survey images to analyze two small planets orbiting the nearby, field age, M dwarfs K2-26 (EPIC 202083828) and K2-9. K2-26 is an M1.0 +/- 0.5 dwarf at 93 +/- 7 pc from K2 Campaign 0. We validate its 14.5665 d period planet and estimate a radius of 2.67^+0.46_-0.42 R_earth. K2-9 is an M2.5 +/- 0.5 dwarf at 110 +/- 12 pc from K2 Campaign 1. K2-9b was first identified by Montet et al. 2015; here we present spectra and adaptive optics imaging of the host star and independently validate and characterize the planet. Our analyses indicate K2-9b is a 2.25^+0.53_-0.96 R_earth planet with a 18.4498 d period. K2-26b exhibits a transit duration that is too long to be consistent with a circular orbit given the measured stellar radius. Thus, the long transits are likely due to the photoeccentric effect and our transit fits hint at an eccentric orbit. Both planets receive low incident flux from their host stars and have estimated equilibrium temperatures <500 K. K2-9b may receive approximately Earth-like insolation. However, its host star exhibits strong GALEX UV emission which could affect any atmosphere it harbors. K2-26b and K2-9b are representatives of a poorly studied class of small planets with cool temperatures that have radii intermediate to Earth and Neptune. Future study of these systems can provide key insight into trends in bulk composition and atmospheric properties at the transition from silicate dominated to volatile rich bodies.
K2-138 is a moderately bright (V = 12.2, K = 10.3) main sequence K-star observed in Campaign 12 of the NASA K2 mission. It hosts five small (1.6-3.3R_Earth) transiting planets in a compact architecture. The periods of the five planets are 2.35 d, 3.5 6 d, 5.40 d, 8.26 d, and 12.76 d, forming an unbroken chain of near 3:2 resonances. Although we do not detect the predicted 2-5 minute transit timing variations with the K2 timing precision, they may be observable by higher cadence observations with, for example, Spitzer or CHEOPS. The planets are amenable to mass measurement by precision radial velocity measurements, and therefore K2-138 could represent a new benchmark systems for comparing radial velocity and TTV masses. K2-138 is the first exoplanet discovery by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا