ترغب بنشر مسار تعليمي؟ اضغط هنا

The K2-138 System: A Near-Resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists

78   0   0.0 ( 0 )
 نشر من قبل Jessie Christiansen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

K2-138 is a moderately bright (V = 12.2, K = 10.3) main sequence K-star observed in Campaign 12 of the NASA K2 mission. It hosts five small (1.6-3.3R_Earth) transiting planets in a compact architecture. The periods of the five planets are 2.35 d, 3.56 d, 5.40 d, 8.26 d, and 12.76 d, forming an unbroken chain of near 3:2 resonances. Although we do not detect the predicted 2-5 minute transit timing variations with the K2 timing precision, they may be observable by higher cadence observations with, for example, Spitzer or CHEOPS. The planets are amenable to mass measurement by precision radial velocity measurements, and therefore K2-138 could represent a new benchmark systems for comparing radial velocity and TTV masses. K2-138 is the first exoplanet discovery by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse platform.



قيم البحث

اقرأ أيضاً

Observations from the Kepler and K2 missions have provided the astronomical community with unprecedented amounts of data to search for transiting exoplanets and other astrophysical phenomena. Here, we present K2-288, a low-mass binary system (M2.0 +/ - 1.0; M3.0 +/- 1.0) hosting a small (Rp = 1.9 REarth), temperate (Teq = 226 K) planet observed in K2 Campaign 4. The candidate was first identified by citizen scientists using Exoplanet Explorers hosted on the Zooniverse platform. Follow-up observations and detailed analyses validate the planet and indicate that it likely orbits the secondary star on a 31.39-day period. This orbit places K2-288Bb in or near the habitable zone of its low-mass host star. K2-288Bb resides in a system with a unique architecture, as it orbits at >0.1 au from one component in a moderate separation binary (aproj approximately 55 au), and further follow-up may provide insight into its formation and evolution. Additionally, its estimated size straddles the observed gap in the planet radius distribution. Planets of this size occur less frequently and may be in a transient phase of radius evolution. K2-288 is the third transiting planet system identified by the Exoplanet Explorers program and its discovery exemplifies the value of citizen science in the era of Kepler, K2, and the Transiting Exoplanet Survey Satellite.
The detection of low-mass transiting exoplanets in multiple systems brings new constraints to planetary formation and evolution processes and challenges the current planet formation theories. Nevertheless, only a mere fraction of the small planets de tected by Kepler and K2 have precise mass measurements, which are mandatory to constrain their composition. We aim to characterise the planets that orbit the relatively bright star K2-138. This system is dynamically particular as it presents the longest chain known to date of planets close to the 3:2 resonance. We obtained 215 HARPS spectra from which we derived the radial-velocity variations of K2-138. Via a joint Bayesian analysis of both the K2 photometry and HARPS radial-velocities (RVs), we constrained the parameters of the six planets in orbit. The masses of the four inner planets, from b to e, are 3.1, 6.3, 7.9, and 13.0 $mathrm{M}_{oplus}$ with a precision of 34%, 20%, 18%, and 15%, respectively. The bulk densities are 4.9, 2.8, 3.2, and 1.8 g cm$^{-3}$, ranging from Earth to Neptune-like values. For planets f and g, we report upper limits. Finally, we predict transit timing variations of the order two to six minutes from the masses derived. Given its peculiar dynamics, K2-138 is an ideal target for transit timing variation (TTV) measurements from space with the upcoming CHaracterizing ExOPlanet Satellite (CHEOPS) to study this highly-packed system and compare TTV and RV masses.
$K2$ greatly extended $Kepler$s ability to find new planets, but it was typically limited to identifying transiting planets with orbital periods below 40 days. While analyzing $K2$ data through the Exoplanet Explorers project, citizen scientists help ed discover one super-Earth and four sub-Neptune sized planets in the relatively bright ($V=12.21$, $K=10.3$) K2-138 system, all which orbit near 3:2 mean motion resonances. The $K2$ light curve showed two additional transit events consistent with a sixth planet. Using $Spitzer$ photometry, we validate the sixth planets orbital period of $41.966pm0.006$ days and measure a radius of $3.44^{+0.32}_{-0.31},R_{oplus}$, solidifying K2-138 as the $K2$ system with the most currently known planets. There is a sizeable gap between the outer two planets, since the fifth planet in the system, K2-138 f, orbits at 12.76 days. We explore the possibility of additional non-transiting planets in the gap between f and g. Due to the relative brightness of the K2-138 host star, and the near resonance of the inner planets, K2-138 could be a key benchmark system for both radial velocity and transit timing variation mass measurements, and indeed radial velocity masses for the inner four planets have already been obtained. With its five sub-Neptunes and one super-Earth, the K2-138 system provides a unique test bed for comparative atmospheric studies of warm to temperate planets of similar size, dynamical studies of near resonant planets, and models of planet formation and migration.
We provide 28 new planet candidates that have been vetted by citizen scientists and expert astronomers. This catalog contains 9 likely rocky candidates ($R_{pl} < 2.0R_oplus$) and 19 gaseous candidates ($R_{pl} > 2.0R_oplus$). Within this list we fin d one multi-planet system (EPIC 246042088). These two sub-Neptune ($2.99 pm 0.02R_oplus$ and $3.44 pm 0.02R_oplus$) planets exist in a near 3:2 orbital resonance. The discovery of this multi-planet system is important in its addition to the list of known multi-planet systems within the K2 catalog, and more broadly in understanding the multiplicity distribution of the exoplanet population (Zink et al. 2019). The candidates on this list are anticipated to generate RV amplitudes of 0.2-18 m/s, many within the range accessible to current facilities.
In this paper we report the discovery of TOI-220 $b$, a new sub-Neptune detected by the Transiting Exoplanet Survey Satellite (TESS) and confirmed by radial velocity follow-up observations with the HARPS spectrograph. Based on the combined analysis o f TESS transit photometry and high precision radial velocity measurements we estimate a planetary mass of 13.8 $pm$ 1.0 M$_{Earth}$ and radius of 3.03 $pm$ 0.15 R$_{Earth}$, implying a bulk density of 2.73 $pm$ 0.47 $textrm{g cm}^{-3}$. TOI-220 $b$ orbits a relative bright (V=10.4) and old (10.1$pm$1.4 Gyr) K dwarf star with a period of $sim$10.69 d. Thus, TOI-220 $b$ is a new warm sub-Neptune with very precise mass and radius determinations. A Bayesian analysis of the TOI-220 $b$ internal structure indicates that due to the strong irradiation it receives, the low density of this planet could be explained with a steam atmosphere in radiative-convective equilibrium and a supercritical water layer on top of a differentiated interior made of a silicate mantle and a small iron core.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا