ترغب بنشر مسار تعليمي؟ اضغط هنا

Two Small Temperate Planets Transiting Nearby M Dwarfs in K2 Campaigns 0 and 1

317   0   0.0 ( 0 )
 نشر من قبل Joshua Schlieder
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The prime Kepler mission revealed that small planets (<4 R_earth) are common, especially around low-mass M dwarfs. K2, the re-purposed Kepler mission, continues this exploration of small planets around small stars. Here we combine K2 photometry with spectroscopy, adaptive optics imaging, and archival survey images to analyze two small planets orbiting the nearby, field age, M dwarfs K2-26 (EPIC 202083828) and K2-9. K2-26 is an M1.0 +/- 0.5 dwarf at 93 +/- 7 pc from K2 Campaign 0. We validate its 14.5665 d period planet and estimate a radius of 2.67^+0.46_-0.42 R_earth. K2-9 is an M2.5 +/- 0.5 dwarf at 110 +/- 12 pc from K2 Campaign 1. K2-9b was first identified by Montet et al. 2015; here we present spectra and adaptive optics imaging of the host star and independently validate and characterize the planet. Our analyses indicate K2-9b is a 2.25^+0.53_-0.96 R_earth planet with a 18.4498 d period. K2-26b exhibits a transit duration that is too long to be consistent with a circular orbit given the measured stellar radius. Thus, the long transits are likely due to the photoeccentric effect and our transit fits hint at an eccentric orbit. Both planets receive low incident flux from their host stars and have estimated equilibrium temperatures <500 K. K2-9b may receive approximately Earth-like insolation. However, its host star exhibits strong GALEX UV emission which could affect any atmosphere it harbors. K2-26b and K2-9b are representatives of a poorly studied class of small planets with cool temperatures that have radii intermediate to Earth and Neptune. Future study of these systems can provide key insight into trends in bulk composition and atmospheric properties at the transition from silicate dominated to volatile rich bodies.


قيم البحث

اقرأ أيضاً

We have analyzed data from Campaigns 0-5 of the K2 mission and report 19 ultra-short-period candidate planets with orbital periods of less than 1 day (nine of which have not been previously reported). Planet candidates range in size from 0.7-16 Earth radii and in orbital period from 4.2 to 23.5 hours. One candidate (EPIC 203533312, Kp=12.5) is among the shortest-period planet candidates discovered to date (P=4.2 hours), and, if confirmed as a planet, must have a density of at least rho=8.9 g/cm^3 in order to not be tidally disrupted. Five candidates have nominal radius values in the sub-Jovian desert (R_P=3-11 R_E and P<=1.5 days) where theoretical models do not favor their long-term stability; the only confirmed planet in this range is in fact thought to be disintegrating (EPIC 201637175). In addition to the planet candidates, we report on four objects which may not be planetary, including one with intermittent transits (EPIC 211152484) and three initially promising candidates that are likely false positives based on characteristics of their light curves and on radial velocity follow-up. A list of 91 suspected eclipsing binaries identified at various stages in our vetting process is also provided. Based on an assessment of our surveys completeness, we estimate an occurrence rate for ultra-short period planets among K2 target stars that is about half that estimated from the Kepler sample, raising questions as to whether K2 systems are intrinsically different from Kepler systems, possibly as a result of their different galactic location.
We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R_e and an ultra-short orbital p eriod of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R_e and orbits its host star every 29.85 days. At a distance of just 45.8 +/- 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets masses. The outer planet is large enough that it likely has a thick gaseous envelope which could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope.
We analysed 68 candidate planetary systems first identified during Campaigns 5 and 6 (C5 and C6) of the NASA textit{K2} mission. We set out to validate these systems by using a suite of follow-up observations, including adaptive optics, speckle imagi ng, and reconnaissance spectroscopy. The overlap between C5 with C16 and C18, and C6 with C17, yields lightcurves with long baselines that allow us to measure the transit ephemeris very precisely, revisit single transit candidates identified in earlier campaigns, and search for additional transiting planets with longer periods not detectable in previous works. Using texttt{vespa}, we compute false positive probabilities of less than 1% for 37 candidates orbiting 29 unique host stars and hence statistically validate them as planets. These planets have a typical size of $2.2R_{oplus}$ and orbital periods between 1.99 and 52.71 days. We highlight interesting systems including a sub-Neptune with the longest period detected by textit{K2}, sub-Saturns around F stars, several multi-planetary systems in a variety of architectures. These results show that a wealth of planetary systems still remains in the textit{K2} data, some of which can be validated using minimal follow-up observations and taking advantage of analyses presented in previous catalogs.
Because the planets of a system form in a flattened disk, they are expected to share similar orbital inclinations at the end of their formation. The high-precision photometric monitoring of stars known to host a transiting planet could thus reveal th e transits of one or more other planets. We investigate here the potential of this approach for the M dwarf GJ 1214 that hosts a transiting super-Earth. For this system, we infer the transit probabilities as a function of orbital periods. Using Monte-Carlo simulations we address both the cases for fully coplanar and for non-coplanar orbits, with three different choices of inclinations distribution for the non-coplanar case. GJ 1214 reveals to be a very promising target for the considered approach. Because of its small size, a ground-based photometric monitoring of this star could detect the transit of a habitable planet as small as the Earth, while a space-based monitoring could detect any transiting habitable planet down to the size of Mars. The mass measurement of such a small planet would be out of reach for current facilities, but we emphasize that a planet mass would not be needed to confirm the planetary nature of the transiting object. Furthermore, the radius measurement combined with theoretical arguments would help us to constrain the structure of the planet.
We present a uniform analysis of 155 candidates from the second year of NASAs $K2$ mission (Campaigns 5-8), yielding 60 statistically validated planets spanning a range of properties, with median values of $R_p$ = 2.5 $R_oplus$, $P$ = 7.1 d, $T_mathr m{eq}$ = 811 K, and $J$ = 11.3 mag. The sample includes 24 planets in 11 multi-planetary systems, as well as 18 false positives, and 77 remaining planet candidates. Of particular interest are 18 planets smaller than 2 $R_oplus$, five orbiting stars brighter than $J$ = 10 mag, and a system of four small planets orbiting the solar-type star EPIC 212157262. We compute planetary transit parameters and false positive probabilities using a robust statistical framework and present a complete analysis incorporating the results of an intensive campaign of high resolution imaging and spectroscopic observations. This work brings the $K2$ yield to over 360 planets, and by extrapolation we expect that $K2$ will have discovered $sim$600 planets before the expected depletion of its on-board fuel in late 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا