ﻻ يوجد ملخص باللغة العربية
Charge transport is a revealing probe of the quantum properties of materials. Strong interactions can blur charge carriers resulting in a poorly understood quantum soup. Here we study the conductivity of the Fermi-Hubbard model, a testing ground for strong interaction physics, in a clean quantum system - ultracold $^6$Li in a 2D optical lattice. We determine the charge diffusion constant in our system by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity, which exhibits a linear temperature dependence and exceeds the Mott-Ioffe-Regel limit, two characteristic signatures of a bad metal. The techniques we develop here may be applied to measurements of other transport quantities, including the optical conductivity and thermopower.
Using quantum gas microscopy we study the late-time effective hydrodynamics of an isolated cold-atom Fermi-Hubbard system subject to an external linear potential (a tilt). The tilt is along one of the principal directions of the two-dimensional (2D)
Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with both energy and momentum resolution, providing detailed information about strongly interacting materials. ARPES is a direct
We experimentally and numerically investigate the sudden expansion of fermions in a homogeneous one-dimensional optical lattice. For initial states with an appreciable amount of doublons, we observe a dynamical phase separation between rapidly expand
We use quantum kinetic theory to calculate the thermoelectric transport properties of the 2D single band Fermi-Hubbard model in the weak coupling limit. For generic filling, we find that the high-temperature limiting behaviors of the electrical ($sim
The attractive Fermi-Hubbard model is the simplest theoretical model for studying pairing and superconductivity of fermions on a lattice. Although its s-wave pairing symmetry excludes it as a microscopic model for high-temperature superconductivity,