ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum gas microscopy of an attractive Fermi-Hubbard system

89   0   0.0 ( 0 )
 نشر من قبل Waseem Bakr
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The attractive Fermi-Hubbard model is the simplest theoretical model for studying pairing and superconductivity of fermions on a lattice. Although its s-wave pairing symmetry excludes it as a microscopic model for high-temperature superconductivity, it exhibits much of the relevant phenomenology, including a short-coherence length at intermediate coupling and a pseudogap regime with anomalous properties. Here we study an experimental realization of this model using a two-dimensional (2D) atomic Fermi gas in an optical lattice. Our site-resolved measurements on the normal state reveal checkerboard charge-density-wave correlations close to half-filling. A hidden SU(2) pseudo-spin symmetry of the Hubbard model at half-filling guarantees superfluid correlations in our system, the first evidence for such correlations in a single-band Hubbard system of ultracold fermions. Compared to the paired atom fraction, we find the charge-density-wave correlations to be a much more sensitive thermometer, useful for optimizing cooling into superfluid phases in future experiments.



قيم البحث

اقرأ أيضاً

81 - K. Fenech , P. Dyke , T. Peppler 2015
Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density and pressure equations of state for an attractive 2D Fe rmi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behaviour.
Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with both energy and momentum resolution, providing detailed information about strongly interacting materials. ARPES is a direct probe of fermion pairing, and hence a natural technique to study the development of superconductivity in a variety of experimental systems ranging from high temperature superconductors to unitary Fermi gases. In these systems a remnant gap-like feature persists in the normal state, which is referred to as a pseudogap. A quantitative understanding of pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but developing this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi-Hubbard system across the BCS-BEC crossover and comparing to quantum Monte Carlo calculations. We find evidence for a pseudogap in our system that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments.
290 - Zhen-Kai Lu , S.I. Matveenko , 2013
We study zero sound in a weakly interacting 2D gas of single-component fermionic dipoles (polar molecules or atoms with a large magnetic moment) tilted with respect to the plane of their translational motion. It is shown that the propagation of zero sound is provided by both mean field and many-body (beyond mean field) effects, and the anisotropy of the sound velocity is the same as the one of the Fermi velocity. The damping of zero sound modes can be much slower than that of quasiparticle excitations of the same energy. One thus has wide possibilities for the observation of zero sound modes in experiments with 2D fermionic dipoles, although the zero sound peak in the structure function is very close to the particle-hole continuum.
The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, it was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg mod el. We test this conjecture by experimentally probing transport in a cold-atom quantum simulator via the relaxation of domain walls in spin chains of up to 50 spins. We find that domain-wall relaxation is indeed governed by the KPZ dynamical exponent $z = 3/2$, and that the occurrence of KPZ scaling requires both integrability and a non-abelian SU(2) symmetry. Finally, we leverage the single-spin-sensitive detection enabled by the quantum-gas microscope to measure a novel observable based on spin-transport statistics, which yields a clear signature of the non-linearity that is a hallmark of KPZ universality.
199 - K. Aikawa , S. Baier , A. Frisch 2014
The deformation of a Fermi surface is a fundamental phenomenon leading to a plethora of exotic quantum phases. Understanding these phases, which play crucial roles in a wealth of systems, is a major challenge in atomic and condensed-matter physics. H ere, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا