ﻻ يوجد ملخص باللغة العربية
Using quantum gas microscopy we study the late-time effective hydrodynamics of an isolated cold-atom Fermi-Hubbard system subject to an external linear potential (a tilt). The tilt is along one of the principal directions of the two-dimensional (2D) square lattice and couples mass transport to local heating through energy conservation. We study transport and thermalization in our system by observing the decay of prepared initial density waves as a function of wavelength $lambda$ and tilt strength and find that the associated decay time $tau$ crosses over as the tilt strength is increased from characteristically diffusive to subdiffusive with $tauproptolambda^4$. In order to explain the underlying physics we develop a hydrodynamic model that exhibits this crossover. For strong tilts, the subdiffusive transport rate is set by a thermal diffusivity, which we are thus able to measure as a function of tilt in this regime. We further support our understanding by probing the local inverse temperature of the system at strong tilts, finding good agreement with our theoretical predictions. Finally, we discuss the relation of the strongly tilted limit of our system to recently studied 1D models which may exhibit nonergodic dynamics.
Quantum many-body systems may defy thermalization even without disorder. Intriguingly, non-ergodicity may be caused by a fragmentation of the many-body Hilbert-space into dynamically disconnected subspaces. The tilted one-dimensional Fermi-Hubbard mo
The thermalization of isolated quantum many-body systems is deeply related to fundamental questions of quantum information theory. While integrable or many-body localized systems display non-ergodic behavior due to extensively many conserved quantiti
We use quantum kinetic theory to calculate the thermoelectric transport properties of the 2D single band Fermi-Hubbard model in the weak coupling limit. For generic filling, we find that the high-temperature limiting behaviors of the electrical ($sim
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating
Charge transport is a revealing probe of the quantum properties of materials. Strong interactions can blur charge carriers resulting in a poorly understood quantum soup. Here we study the conductivity of the Fermi-Hubbard model, a testing ground for