ﻻ يوجد ملخص باللغة العربية
We propose an algorithm to impute and forecast a time series by transforming the observed time series into a matrix, utilizing matrix estimation to recover missing values and de-noise observed entries, and performing linear regression to make predictions. At the core of our analysis is a representation result, which states that for a large model class, the transformed time series matrix is (approximately) low-rank. In effect, this generalizes the widely used Singular Spectrum Analysis (SSA) in time series literature, and allows us to establish a rigorous link between time series analysis and matrix estimation. The key to establishing this link is constructing a Page matrix with non-overlapping entries rather than a Hankel matrix as is commonly done in the literature (e.g., SSA). This particular matrix structure allows us to provide finite sample analysis for imputation and prediction, and prove the asymptotic consistency of our method. Another salient feature of our algorithm is that it is model agnostic with respect to both the underlying time dynamics and the noise distribution in the observations. The noise agnostic property of our approach allows us to recover the latent states when only given access to noisy and partial observations a la a Hidden Markov Model; e.g., recovering the time-varying parameter of a Poisson process without knowing that the underlying process is Poisson. Furthermore, since our forecasting algorithm requires regression with noisy features, our approach suggests a matrix estimation based method - coupled with a novel, non-standard matrix estimation error metric - to solve the error-in-variable regression problem, which could be of interest in its own right. Through synthetic and real-world datasets, we demonstrate that our algorithm outperforms standard software packages (including R libraries) in the presence of missing data as well as high levels of noise.
In many scenarios, humans prefer a text-based representation of quantitative data over numerical, tabular, or graphical representations. The attractiveness of textual summaries for complex data has inspired research on data-to-text systems. While the
We study the problem of robust time series analysis under the standard auto-regressive (AR) time series model in the presence of arbitrary outliers. We devise an efficient hard thresholding based algorithm which can obtain a consistent estimate of th
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications. Recent approaches have achieved significant progress in this topic, but there is remaining limitations. One major limitatio
Time series data is a collection of chronological observations which is generated by several domains such as medical and financial fields. Over the years, different tasks such as classification, forecasting, and clustering have been proposed to analy
We design differentially private learning algorithms that are agnostic to the learning model. Our algorithms are interactive in nature, i.e., instead of outputting a model based on the training data, they provide predictions for a set of $m$ feature