ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering Weyl Fermions in the Quantum Limit of NbP

191   0   0.0 ( 0 )
 نشر من قبل Kimberly Modic
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi surface topology of a Weyl semimetal (WSM) depends strongly on the position of the chemical potential. If it resides close to the band touching points (Weyl nodes), as it does in TaAs, separate Fermi surfaces of opposite chirality emerge, leading to novel phenomena such as the chiral magnetic effect. If the chemical potential lies too far from the nodes, however, the chiral Fermi surfaces merge into a single large Fermi surface with no net chirality. This is realized in the WSM NbP, where the Weyl nodes lie far below the Fermi energy and where the transport properties in low magnetic fields show no evidence of chiral Fermi surfaces. Here we show that the behavior of NbP in high magnetic fields is nonetheless dominated by the presence of the Weyl nodes. Torque magnetometry up to 60 tesla reveals a change in the slope of $tau/B$ at the quantum limit B$^star$ ($approx 32,rm{T}$), where the chemical potential enters the $n=0$ Landau level. Numerical simulations show that this behaviour results from the magnetic field pulling the chemical potential to the chiral $n=0$ Landau level belonging to the Weyl nodes. These results show that high magnetic fields can uncover topological singularities in the underlying band structure of a potential WSM, and can recover topologically non-trivial experimental properties, even when the position of the chemical potential precludes their observation in zero magnetic field.



قيم البحث

اقرأ أيضاً

Non-centrosymmetric transition metal monopnictides, including TaAs, TaP, NbAs, and NbP, are emergent topological Weyl semimetals (WSMs) hosting exotic relativistic Weyl fermions. In this letter, we elucidate the physical origin of the unprecedented c harge carrier mobility of NbP, which can reach $1times10^{7}$ cm $^{2}$V$^{-1}$s$^{-1}$ at 1.5 K. Angle- and temperature-dependent quantum oscillations, supported by density function theory calculations, reveal that NbP has the coexistence of p- and n-type WSM pockets in the $k_{z}$=1.16$pi$/c plane (W1-WSM) and in the $k_{z}$=0 plane near the high symmetry points $Sigma$ (W2-WSM), respectively. Uniquely, each W2-WSM pocket forms a large dumbbell-shaped Fermi surface (FS) enclosing two neighboring Weyl nodes with the opposite chirality. The magneto-transport in NbP is dominated by these highly anisotropic W2-WSM pockets, in which Weyl fermions are well protected from defect backscattering by real spin conservation associated to the chiral nodes. However, with a minimal doping of $sim$1% Cr, the mobility of NbP is degraded by more than two order of magnitude, due to the invalid of helicity protection to magnetic impurities. Helicity protected Weyl fermion transport is also manifested in chiral anomaly induced negative magnetoresistance, controlled by the W1-WSM states. In the quantum regime below 10 K, the intervalley scattering time by impurities becomes a large constant, producing the sharp and nearly identical conductivity enhancement at low magnetic field.
Weyl fermions are a new ingredient for correlated states of electronic matter. A key difficulty has been that real materials also contain non-Weyl quasiparticles, and disentangling the experimental signatures has proven challenging. We use magnetic f ields up to 95 tesla to drive the Weyl semimetal TaAs far into its quantum limit (QL), where only the purely chiral 0th Landau levels (LLs) of the Weyl fermions are occupied. We find the electrical resistivity to be nearly independent of magnetic field up to 50 tesla: unusual for conventional metals but consistent with the chiral anomaly for Weyl fermions. Above 50 tesla we observe a two-order-of-magnitude increase in resistivity, indicating that a gap opens in the chiral LLs. Above 80 tesla we observe strong ultrasonic attenuation below 2 kelvin, suggesting a mesoscopically-textured state of matter. These results point the way to inducing new correlated states of matter in the QL of Weyl semimetals.
The first Weyl semimetal was recently discovered in the NbP class of compounds. Although the topology of these novel materials has been identified, the surface properties are not yet fully understood. By means of scanning tunneling spectroscopy, we f ind that NbPs (001) surface hosts a pair of Dirac cones protected by mirror symmetry. Through our high resolution spectroscopic measurements, we resolve the quantum interference patterns arising from these novel Dirac fermions, and reveal their electronic structure, including the linear dispersions. Our data, in agreement with our theoretical calculations, uncover further interesting features of the Weyl semimetal NbPs already exotic surface. Moreover, we discuss the similarities and distinctions between the Dirac fermions here and those in topological crystalline insulators in terms of symmetry protection and topology.
89 - Hao Su , Xianbiao Shi , Jian Yuan 2021
The noncentrosymmetric RAlPn (R = rare earth, Pn = Si, Ge) family, predicted to host nonmagnetic and magnetic Weyl states, provide an excellent platform for investigating the relation between magnetism and Weyl physics. By using high field magnetotra nsport measurements and first principles calculations, we have unveiled herein both type-I and type-II Weyl states in the nonmagnetic LaAlSi. By a careful comparison between experimental results and theoretical calculations, nontrivial Berry phases associated with the Shubnikov-de Haas oscillations are ascribed to the electron Fermi pockets related to both types of Weyl points located ~ 0.1 eV above and exactly on the Fermi level, respectively. Under high magnetic field, signatures of Zeeman splitting are also observed. These results indicate that, in addition to the importance for exploring intriguing physics of multiple Weyl fermions, LaAlSi as a comparison with magnetic Weyl semimetals in the RAlPn family would also yield valuable insights into the relation between magnetism and Weyl physics.
As one of Weyl semimetals discovered recently, NbP exhibits two groups of Weyl points with one group lying inside the $k_z=0$ plane and the other group staying away from this plane. All Weyl points have been assumed to be type-I, for which the Fermi surface shrinks into a point as the Fermi energy crosses the Weyl point. In this work, we have revealed that the second group of Weyl points are actually type-II, which are found to be touching points between the electron and hole pockets in the Fermi surface. Corresponding Weyl cones are strongly tilted along a line approximately $17^circ$ off the $k_z$ axis in the $k_x - k_z$ (or $k_y - k_z$) plane, violating the Lorentz symmetry but still giving rise to Fermi arcs on the surface. Therefore, NbP exhibits both type-I ($k_z=0$ plane) and type-II ($k_z eq 0$ plane) Weyl points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا