ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity protected ultrahigh mobility Weyl fermions in NbP

292   0   0.0 ( 0 )
 نشر من قبل Yi Zheng
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-centrosymmetric transition metal monopnictides, including TaAs, TaP, NbAs, and NbP, are emergent topological Weyl semimetals (WSMs) hosting exotic relativistic Weyl fermions. In this letter, we elucidate the physical origin of the unprecedented charge carrier mobility of NbP, which can reach $1times10^{7}$ cm $^{2}$V$^{-1}$s$^{-1}$ at 1.5 K. Angle- and temperature-dependent quantum oscillations, supported by density function theory calculations, reveal that NbP has the coexistence of p- and n-type WSM pockets in the $k_{z}$=1.16$pi$/c plane (W1-WSM) and in the $k_{z}$=0 plane near the high symmetry points $Sigma$ (W2-WSM), respectively. Uniquely, each W2-WSM pocket forms a large dumbbell-shaped Fermi surface (FS) enclosing two neighboring Weyl nodes with the opposite chirality. The magneto-transport in NbP is dominated by these highly anisotropic W2-WSM pockets, in which Weyl fermions are well protected from defect backscattering by real spin conservation associated to the chiral nodes. However, with a minimal doping of $sim$1% Cr, the mobility of NbP is degraded by more than two order of magnitude, due to the invalid of helicity protection to magnetic impurities. Helicity protected Weyl fermion transport is also manifested in chiral anomaly induced negative magnetoresistance, controlled by the W1-WSM states. In the quantum regime below 10 K, the intervalley scattering time by impurities becomes a large constant, producing the sharp and nearly identical conductivity enhancement at low magnetic field.



قيم البحث

اقرأ أيضاً

The first Weyl semimetal was recently discovered in the NbP class of compounds. Although the topology of these novel materials has been identified, the surface properties are not yet fully understood. By means of scanning tunneling spectroscopy, we f ind that NbPs (001) surface hosts a pair of Dirac cones protected by mirror symmetry. Through our high resolution spectroscopic measurements, we resolve the quantum interference patterns arising from these novel Dirac fermions, and reveal their electronic structure, including the linear dispersions. Our data, in agreement with our theoretical calculations, uncover further interesting features of the Weyl semimetal NbPs already exotic surface. Moreover, we discuss the similarities and distinctions between the Dirac fermions here and those in topological crystalline insulators in terms of symmetry protection and topology.
The magnetotransport properties of disordered ferromagnetic Weyl semimetals are investigated numerically. We found an extraordinarily stable and huge magnetoresistance effect in domain walls of Weyl semimetals. This effect originates from the helicit y mismatch of Weyl fermions and is a specific property of Weyl semimetals. Although conventional magnetoresistance effects are strongly suppressed in domain walls where local magnetization varies gradually, the helicity-protected magnetoresistance in Weyl semimetals maintains almost $100%$ of the magnetoresistance ratio for any kind of thick domain walls, even in the presence of disorder. The contribution of surface Fermi arcs to the magnetoresistance is also discussed.
The optical properties of (001)-oriented NbP single crystals have been studied in a wide spectral range from 6 meV to 3 eV from room temperature down to 10 K. The itinerant carriers lead to a Drude-like contribution to the optical response; we can fu rther identify two pronounced phonon modes and interband transitions starting already at rather low frequencies. By comparing our experimental findings to the calculated interband optical conductivity, we can assign the features observed in the measured conductivity to certain interband transitions. In particular, we find that transitions between the electronic bands spilt by spin-orbit coupling dominate the interband conductivity of NbP below 100 meV. At low temperatures, the momentum-relaxing scattering rate of the itinerant carriers in NbP is very small, leading to macroscopic characteristic length scales of the momentum relaxation of approximately 0.5 $mu$m.
Weyl Semimetals (WSMs), a recently discovered topological state of matter, exhibit an electronic structure governed by linear band dispersions and degeneracy (Weyl) points leading to rich physical phenomena, which are yet to be exploited in thin film devices. While WSMs were established in the monopnictide compound family several years ago, the growth of thin films has remained a challenge. Here, we report the growth of epitaxial thin films of NbP and TaP by means of molecular beam epitaxy. Single crystalline films are grown on MgO (001) substrates using thin Nb (Ta) buffer layers, and are found to be tensile strained (1%) and with slightly P-rich stoichiometry with respect to the bulk crystals. The resulting electronic structure exhibits topological surface states characteristic of a P-terminated surface and linear dispersion bands in agreement with the calculated band structure, and a Fermi-level shift of -0.2 eV with respect to the Weyl points. Consequently, the electronic transport is dominated by both holes and electrons with carrier mobilities close to 10^3 cm2/Vs at room-temperature. The growth of epitaxial thin films opens up the use of strain and controlled doping to access and tune the electronic structure of Weyl Semimetals on demand, paving the way for the rational design and fabrication of electronic devices ruled by topology.
In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here we show that in solid state systems this classification is incomplete and find several additional types of crystal symmetry-protected free fermio nic excitations . We exhaustively classify linear and quadratic 3-, 6- and 8- band crossings stabilized by space group symmetries in solid state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab-initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا