ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Hochschild Homology of H(Z/p^k)

99   0   0.0 ( 0 )
 نشر من قبل Nitu Kitchloo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Nitu Kitchloo




اسأل ChatGPT حول البحث

In this short note we study the topological Hoschschild homology of Eilenberg-MacLane spectra for finite cyclic groups. In particular, we show that the Eilenberg-MacLane spectrum H(Z/p^k) is a Thom spectrum for any prime p (except, possibly, when p=k=2) and we also compute its topological Hoschshild homology. This yields a short proof of the results obtained by Brun, and by Pirashvili except for the anomalous case p=k=2.



قيم البحث

اقرأ أيضاً

We show that an important classical fixed point invariant, the Reidemeister trace, arises as a topological Hochschild homology transfer. This generalizes a corresponding classical result for the Euler characteristic and is a first step in showing the Reidemeister trace is in the image of the cyclotomic trace. The main result follows from developing the relationship between shadows, topological Hochschild homology, and Morita invariance in bicategorical generality.
We calculate the integral homotopy groups of THH(l) at any prime and of THH(ko) at p=2, where l is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.
We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) rightarrow THH(E(2))rightarrow ove rline{THH}(E(2))$ and describe $overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 leq i leq n$. In particular, we compute $K(i)_*THH(E(n))$.
We determine higher topological Hochschild homology of rings of integers in number fields with coefficients in suitable residue fields. We use the iterative description of higher THH for this and Postnikov arguments that allow us to reduce the necess ary computations to calculations in homological algebra, starting from the results of Bokstedt and Lindenstrauss-Madsen on (ordinary) topological Hochschild homology.
We compute topological Hochschild homology of sufficiently structured forms of truncated Brown--Peterson spectra with coefficients. In particular, we compute $operatorname{THH}_*(operatorname{taf}^D;M)$ for $Min { Hmathbb{Z}_{(3)},k(1),k(2)}$ where $ operatorname{taf}^D$ is the $E_{infty}$ form of $BPlangle 2rangle$ constructed by Hill--Lawson. We compute $operatorname{THH}_*(operatorname{tmf}_1(3);M)$ when $Min { Hmathbb{Z}_{(2)},k(2)}$ where $operatorname{tmf}_1(3)$ is the $E_{infty}$ form of $BPlangle 2rangle$ constructed by Lawson--Naumann. We also compute $operatorname{THH}_*(Blangle nrangle;M)$ for $M=Hmathbb{Z}_{(p)}$ and certain $E_3$ forms $Blangle nrangle$ of $BPlangle nrangle$. For example at $p=2$, this result applies to the $E_3$ forms of $BPlangle nrangle$ constructed by Hahn--Wilson.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا