ﻻ يوجد ملخص باللغة العربية
We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) rightarrow THH(E(2))rightarrow overline{THH}(E(2))$ and describe $overline{THH}(E(2))$ under the assumption that $E(2)$ is an $E_3$-ring spectrum. We state general results about the $K(i)$-local behaviour of $THH(E(n))$ for all $n$ and $0 leq i leq n$. In particular, we compute $K(i)_*THH(E(n))$.
We compute topological Hochschild homology of sufficiently structured forms of truncated Brown--Peterson spectra with coefficients. In particular, we compute $operatorname{THH}_*(operatorname{taf}^D;M)$ for $Min { Hmathbb{Z}_{(3)},k(1),k(2)}$ where $
Twisted topological Hochschild homology of $C_n$-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this pape
We show that an important classical fixed point invariant, the Reidemeister trace, arises as a topological Hochschild homology transfer. This generalizes a corresponding classical result for the Euler characteristic and is a first step in showing the
We calculate the integral homotopy groups of THH(l) at any prime and of THH(ko) at p=2, where l is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.
In this short note we study the topological Hoschschild homology of Eilenberg-MacLane spectra for finite cyclic groups. In particular, we show that the Eilenberg-MacLane spectrum H(Z/p^k) is a Thom spectrum for any prime p (except, possibly, when p=k