ﻻ يوجد ملخص باللغة العربية
We compute topological Hochschild homology of sufficiently structured forms of truncated Brown--Peterson spectra with coefficients. In particular, we compute $operatorname{THH}_*(operatorname{taf}^D;M)$ for $Min { Hmathbb{Z}_{(3)},k(1),k(2)}$ where $operatorname{taf}^D$ is the $E_{infty}$ form of $BPlangle 2rangle$ constructed by Hill--Lawson. We compute $operatorname{THH}_*(operatorname{tmf}_1(3);M)$ when $Min { Hmathbb{Z}_{(2)},k(2)}$ where $operatorname{tmf}_1(3)$ is the $E_{infty}$ form of $BPlangle 2rangle$ constructed by Lawson--Naumann. We also compute $operatorname{THH}_*(Blangle nrangle;M)$ for $M=Hmathbb{Z}_{(p)}$ and certain $E_3$ forms $Blangle nrangle$ of $BPlangle nrangle$. For example at $p=2$, this result applies to the $E_3$ forms of $BPlangle nrangle$ constructed by Hahn--Wilson.
We equip $mathrm{BP} langle n rangle$ with an $mathbb{E}_3$-$mathrm{BP}$-algebra structure, for each prime $p$ and height $n$. The algebraic $K$-theory of this $mathbb{E}_3$-ring is of chromatic height exactly $n+1$. Specifically, it is an fp-spectru
Twisted topological Hochschild homology of $C_n$-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this pape
We calculate the integral homotopy groups of THH(l) at any prime and of THH(ko) at p=2, where l is the Adams summand of the connective complex p-local K-theory spectrum and ko is the connective real K-theory spectrum.
The topological Hochschild homology $THH(A)$ of an orthogonal ring spectrum $A$ can be defined by evaluating the cyclic bar construction on $A$ or by applying Bokstedts original definition of $THH$ to $A$. In this paper, we construct a chain of stabl
We offer a complete description of $THH(E(2))$ under the assumption that the Johnson-Wilson spectrum $E(2)$ at a chosen odd prime carries an $E_infty$-structure. We also place $THH(E(2))$ in a cofiber sequence $E(2) rightarrow THH(E(2))rightarrow ove