ترغب بنشر مسار تعليمي؟ اضغط هنا

An Alternative View: When Does SGD Escape Local Minima?

43   0   0.0 ( 0 )
 نشر من قبل Yang Yuan
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic gradient descent (SGD) is widely used in machine learning. Although being commonly viewed as a fast but not accurate version of gradient descent (GD), it always finds better solutions than GD for modern neural networks. In order to understand this phenomenon, we take an alternative view that SGD is working on the convolved (thus smoothed) version of the loss function. We show that, even if the function $f$ has many bad local minima or saddle points, as long as for every point $x$, the weighted average of the gradients of its neighborhoods is one point convex with respect to the desired solution $x^*$, SGD will get close to, and then stay around $x^*$ with constant probability. More specifically, SGD will not get stuck at sharp local minima with small diameters, as long as the neighborhoods of these regions contain enough gradient information. The neighborhood size is controlled by step size and gradient noise. Our result identifies a set of functions that SGD provably works, which is much larger than the set of convex functions. Empirically, we observe that the loss surface of neural networks enjoys nice one point convexity properties locally, therefore our theorem helps explain why SGD works so well for neural networks.



قيم البحث

اقرأ أيضاً

We study the optimization problem for decomposing $d$ dimensional fourth-order Tensors with $k$ non-orthogonal components. We derive textit{deterministic} conditions under which such a problem does not have spurious local minima. In particular, we sh ow that if $kappa = frac{lambda_{max}}{lambda_{min}} < frac{5}{4}$, and incoherence coefficient is of the order $O(frac{1}{sqrt{d}})$, then all the local minima are globally optimal. Using standard techniques, these conditions could be easily transformed into conditions that would hold with high probability in high dimensions when the components are generated randomly. Finally, we prove that the tensor power method with deflation and restarts could efficiently extract all the components within a tolerance level $O(kappa sqrt{ktau^3})$ that seems to be the noise floor of non-orthogonal tensor decomposition.
Several works have aimed to explain why overparameterized neural networks generalize well when trained by Stochastic Gradient Descent (SGD). The consensus explanation that has emerged credits the randomized nature of SGD for the bias of the training process towards low-complexity models and, thus, for implicit regularization. We take a careful look at this explanation in the context of image classification with common deep neural network architectures. We find that if we do not regularize emph{explicitly}, then SGD can be easily made to converge to poorly-generalizing, high-complexity models: all it takes is to first train on a random labeling on the data, before switching to properly training with the correct labels. In contrast, we find that in the presence of explicit regularization, pretraining with random labels has no detrimental effect on SGD. We believe that our results give evidence that explicit regularization plays a far more important role in the success of overparameterized neural networks than what has been understood until now. Specifically, by penalizing complicated models independently of their fit to the data, regularization affects training dynamics also far away from optima, making simple models that fit the data well discoverable by local methods, such as SGD.
Distributed stochastic gradient descent (SGD) is essential for scaling the machine learning algorithms to a large number of computing nodes. However, the infrastructures variability such as high communication delay or random node slowdown greatly imp edes the performance of distributed SGD algorithm, especially in a wireless system or sensor networks. In this paper, we propose an algorithmic approach named Overlap-Local-SGD (and its momentum variant) to overlap the communication and computation so as to speedup the distributed training procedure. The approach can help to mitigate the straggler effects as well. We achieve this by adding an anchor model on each node. After multiple local updates, locally trained models will be pulled back towards the synchronized anchor model rather than communicating with others. Experimental results of training a deep neural network on CIFAR-10 dataset demonstrate the effectiveness of Overlap-Local-SGD. We also provide a convergence guarantee for the proposed algorithm under non-convex objective functions.
We study local SGD (also known as parallel SGD and federated averaging), a natural and frequently used stochastic distributed optimization method. Its theoretical foundations are currently lacking and we highlight how all existing error guarantees in the convex setting are dominated by a simple baseline, minibatch SGD. (1) For quadratic objectives we prove that local SGD strictly dominates minibatch SGD and that accelerated local SGD is minimax optimal for quadratics; (2) For general convex objectives we provide the first guarantee that at least sometimes improves over minibatch SGD; (3) We show that indeed local SGD does not dominate minibatch SGD by presenting a lower bound on the performance of local SGD that is worse than the minibatch SGD guarantee.
The empirical success of deep learning is often attributed to SGDs mysterious ability to avoid sharp local minima in the loss landscape, as sharp minima are known to lead to poor generalization. Recently, empirical evidence of heavy-tailed gradient n oise was reported in many deep learning tasks, and it was shown in c{S}imc{s}ekli (2019a,b) that SGD can escape sharp local minima under the presence of such heavy-tailed gradient noise, providing a partial solution to the mystery. In this work, we analyze a popular variant of SGD where gradients are truncated above a fixed threshold. We show that it achieves a stronger notion of avoiding sharp minima: it can effectively eliminate sharp local minima entirely from its training trajectory. We characterize the dynamics of truncated SGD driven by heavy-tailed noises. First, we show that the truncation threshold and width of the attraction field dictate the order of the first exit time from the associated local minimum. Moreover, when the objective function satisfies appropriate structural conditions, we prove that as the learning rate decreases, the dynamics of heavy-tailed truncated SGD closely resemble those of a continuous-time Markov chain that never visits any sharp minima. Real data experiments on deep learning confirm our theoretical prediction that heavy-tailed SGD with gradient clipping finds a flatter local minima and achieves better generalization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا