ﻻ يوجد ملخص باللغة العربية
The empirical success of deep learning is often attributed to SGDs mysterious ability to avoid sharp local minima in the loss landscape, as sharp minima are known to lead to poor generalization. Recently, empirical evidence of heavy-tailed gradient noise was reported in many deep learning tasks, and it was shown in c{S}imc{s}ekli (2019a,b) that SGD can escape sharp local minima under the presence of such heavy-tailed gradient noise, providing a partial solution to the mystery. In this work, we analyze a popular variant of SGD where gradients are truncated above a fixed threshold. We show that it achieves a stronger notion of avoiding sharp minima: it can effectively eliminate sharp local minima entirely from its training trajectory. We characterize the dynamics of truncated SGD driven by heavy-tailed noises. First, we show that the truncation threshold and width of the attraction field dictate the order of the first exit time from the associated local minimum. Moreover, when the objective function satisfies appropriate structural conditions, we prove that as the learning rate decreases, the dynamics of heavy-tailed truncated SGD closely resemble those of a continuous-time Markov chain that never visits any sharp minima. Real data experiments on deep learning confirm our theoretical prediction that heavy-tailed SGD with gradient clipping finds a flatter local minima and achieves better generalization.
Stochastic gradient descent with momentum (SGDm) is one of the most popular optimization algorithms in deep learning. While there is a rich theory of SGDm for convex problems, the theory is considerably less developed in the context of deep learning
The stochastic gradient descent (SGD) method and its variants are algorithms of choice for many Deep Learning tasks. These methods operate in a small-batch regime wherein a fraction of the training data, say $32$-$512$ data points, is sampled to comp
Recent empirical work on SGD applied to over-parameterized deep learning has shown that most gradient components over epochs are quite small. Inspired by such observations, we rigorously study properties of noisy truncated SGD (NT-SGD), a noisy gradi
Nonconvex matrix recovery is known to contain no spurious local minima under a restricted isometry property (RIP) with a sufficiently small RIP constant $delta$. If $delta$ is too large, however, then counterexamples containing spurious local minima
Freidlin-Wentzell theory of large deviations can be used to compute the likelihood of extreme or rare events in stochastic dynamical systems via the solution of an optimization problem. The approach gives exponential estimates that often need to be r