ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncertainty Quantification for Online Learning and Stochastic Approximation via Hierarchical Incremental Gradient Descent

101   0   0.0 ( 0 )
 نشر من قبل Weijie J. Su
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic gradient descent (SGD) is an immensely popular approach for online learning in settings where data arrives in a stream or data sizes are very large. However, despite an ever- increasing volume of work on SGD, much less is known about the statistical inferential properties of SGD-based predictions. Taking a fully inferential viewpoint, this paper introduces a novel procedure termed HiGrad to conduct statistical inference for online learning, without incurring additional computational cost compared with SGD. The HiGrad procedure begins by performing SGD updates for a while and then splits the single thread into several threads, and this procedure hierarchically operates in this fashion along each thread. With predictions provided by multiple threads in place, a t-based confidence interval is constructed by decorrelating predictions using covariance structures given by a Donsker-style extension of the Ruppert--Polyak averaging scheme, which is a technical contribution of independent interest. Under certain regularity conditions, the HiGrad confidence interval is shown to attain asymptotically exact coverage probability. Finally, the performance of HiGrad is evaluated through extensive simulation studies and a real data example. An R package higrad has been developed to implement the method.

قيم البحث

اقرأ أيضاً

The superior performance of ensemble methods with infinite models are well known. Most of these methods are based on optimization problems in infinite-dimensional spaces with some regularization, for instance, boosting methods and convex neural netwo rks use $L^1$-regularization with the non-negative constraint. However, due to the difficulty of handling $L^1$-regularization, these problems require early stopping or a rough approximation to solve it inexactly. In this paper, we propose a new ensemble learning method that performs in a space of probability measures, that is, our method can handle the $L^1$-constraint and the non-negative constraint in a rigorous way. Such an optimization is realized by proposing a general purpose stochastic optimization method for learning probability measures via parameterization using transport maps on base models. As a result of running the method, a transport map to output an infinite ensemble is obtained, which forms a residual-type network. From the perspective of functional gradient methods, we give a convergence rate as fast as that of a stochastic optimization method for finite dimensional nonconvex problems. Moreover, we show an interior optimality property of a local optimality condition used in our analysis.
We consider distributed optimization under communication constraints for training deep learning models. We propose a new algorithm, whose parameter updates rely on two forces: a regular gradient step, and a corrective direction dictated by the curren tly best-performing worker (leader). Our method differs from the parameter-averaging scheme EASGD in a number of ways: (i) our objective formulation does not change the location of stationary points compared to the original optimization problem; (ii) we avoid convergence decelerations caused by pulling local workers descending to different local minima to each other (i.e. to the average of their parameters); (iii) our update by design breaks the curse of symmetry (the phenomenon of being trapped in poorly generalizing sub-optimal solutions in symmetric non-convex landscapes); and (iv) our approach is more communication efficient since it broadcasts only parameters of the leader rather than all workers. We provide theoretical analysis of the batch version of the proposed algorithm, which we call Leader Gradient Descent (LGD), and its stochastic variant (LSGD). Finally, we implement an asynchronous version of our algorithm and extend it to the multi-leader setting, where we form groups of workers, each represented by its own local leader (the best performer in a group), and update each worker with a corrective direction comprised of two attractive forces: one to the local, and one to the global leader (the best performer among all workers). The multi-leader setting is well-aligned with current hardware architecture, where local workers forming a group lie within a single computational node and different groups correspond to different nodes. For training convolutional neural networks, we empirically demonstrate that our approach compares favorably to state-of-the-art baselines.
This paper considers the problem of implementing large-scale gradient descent algorithms in a distributed computing setting in the presence of {em straggling} processors. To mitigate the effect of the stragglers, it has been previously proposed to en code the data with an erasure-correcting code and decode at the master server at the end of the computation. We, instead, propose to encode the second-moment of the data with a low density parity-check (LDPC) code. The iterative decoding algorithms for LDPC codes have very low computational overhead and the number of decoding iterations can be made to automatically adjust with the number of stragglers in the system. We show that for a random model for stragglers, the proposed moment encoding based gradient descent method can be viewed as the stochastic gradient descent method. This allows us to obtain convergence guarantees for the proposed solution. Furthermore, the proposed moment encoding based method is shown to outperform the existing schemes in a real distributed computing setup.
We systematically develop a learning-based treatment of stochastic optimal control (SOC), relying on direct optimization of parametric control policies. We propose a derivation of adjoint sensitivity results for stochastic differential equations thro ugh direct application of variational calculus. Then, given an objective function for a predetermined task specifying the desiderata for the controller, we optimize their parameters via iterative gradient descent methods. In doing so, we extend the range of applicability of classical SOC techniques, often requiring strict assumptions on the functional form of system and control. We verify the performance of the proposed approach on a continuous-time, finite horizon portfolio optimization with proportional transaction costs.
We consider stochastic gradient descent and its averaging variant for binary classification problems in a reproducing kernel Hilbert space. In the traditional analysis using a consistency property of loss functions, it is known that the expected clas sification error converges more slowly than the expected risk even when assuming a low-noise condition on the conditional label probabilities. Consequently, the resulting rate is sublinear. Therefore, it is important to consider whether much faster convergence of the expected classification error can be achieved. In recent research, an exponential convergence rate for stochastic gradient descent was shown under a strong low-noise condition but provided theoretical analysis was limited to the squared loss function, which is somewhat inadequate for binary classification tasks. In this paper, we show an exponential convergence of the expected classification error in the final phase of the stochastic gradient descent for a wide class of differentiable convex loss functions under similar assumptions. As for the averaged stochastic gradient descent, we show that the same convergence rate holds from the early phase of training. In experiments, we verify our analyses on the $L_2$-regularized logistic regression.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا