ﻻ يوجد ملخص باللغة العربية
This paper considers the problem of implementing large-scale gradient descent algorithms in a distributed computing setting in the presence of {em straggling} processors. To mitigate the effect of the stragglers, it has been previously proposed to encode the data with an erasure-correcting code and decode at the master server at the end of the computation. We, instead, propose to encode the second-moment of the data with a low density parity-check (LDPC) code. The iterative decoding algorithms for LDPC codes have very low computational overhead and the number of decoding iterations can be made to automatically adjust with the number of stragglers in the system. We show that for a random model for stragglers, the proposed moment encoding based gradient descent method can be viewed as the stochastic gradient descent method. This allows us to obtain convergence guarantees for the proposed solution. Furthermore, the proposed moment encoding based method is shown to outperform the existing schemes in a real distributed computing setup.
Decentralized optimization techniques are increasingly being used to learn machine learning models from data distributed over multiple locations without gathering the data at any one location. Unfortunately, methods that are designed for faultless ne
Stochastic gradient descent (SGD) is an immensely popular approach for online learning in settings where data arrives in a stream or data sizes are very large. However, despite an ever- increasing volume of work on SGD, much less is known about the s
We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of de
Stein variational gradient decent (SVGD) has been shown to be a powerful approximate inference algorithm for complex distributions. However, the standard SVGD requires calculating the gradient of the target density and cannot be applied when the grad
Stein variational gradient descent (SVGD) is a particle-based inference algorithm that leverages gradient information for efficient approximate inference. In this work, we enhance SVGD by leveraging preconditioning matrices, such as the Hessian and F