ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of the Yakutsk air shower array and future plans

173   0   0.0 ( 0 )
 نشر من قبل Artem Sabourov
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Yakutsk Extensive Air Shower Array has been continuously operating for more than 50 years (since 1970) and up until recently it has been one of worlds largest ground-based instruments aimed at studying the properties of cosmic rays in the ultra-high energy domain. In this report we discuss results recently obtained at the array - on cosmic rays energy spectrum, mass composition and directional anisotropy - and how they fit into the world data. Special attention is paid to the measurements of muonic component of extensive air showers. Theoretical results of particle acceleration at shocks are also briefly reviewed. Future scientific and engineering plans on the array modernization are discussed.

قيم البحث

اقرأ أيضاً

The Experimental complex NEVOD includes several different setups for studying various components of extensive air showers (EAS) in the energy range from 10^10 to 10^18 eV. The NEVOD-EAS array for detection of the EAS electron-photon component began i ts data taking in 2018. It is a distributed system of scintillation detectors installed over an area of about 10^4 m^2. A distinctive feature of this array is its cluster organization with different-altitude layout of the detecting elements. The main goal of the NEVOD-EAS array is to obtain an estimation of the primary particle energy for events measured by various detectors of the Experimental complex NEVOD. This paper describes the design, operation principles and data processing of the NEVOD-EAS array. The criteria for the event selection and the accuracy of the EAS parameters reconstruction obtained on the simulated events are discussed. The results of the preliminary analysis of experimental data obtained during a half-year operation are presented.
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing a wide field of view (9.6 degrees in diameter) e nd-to-end prototype of the CTA small-size telescope (SST), devoted to the investigation of the energy range from a fraction of TeV up to tens of TeVs, and scheduled to start data acquisition in 2014. For the first time, a dual-mirror Schwarzschild-Couder optical design will be adopted on a Cherenkov telescope, in order to obtain a compact optical configuration. A second challenging, but innovative technical solution consists of a modular focal surface camera based on Silicon photo-multipliers with a logical pixel size of 6.2mm x 6.2mm. Here we describe the current status of the project, the expected performance, and its possible evolution in terms of an SST mini-array. This CTA-SST precursor, composed of a few SSTs and developed in collaboration with CTA international partners, could not only peruse the technological solutions adopted by ASTRI, but also address a few scientific test cases that are discussed in detail.
The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different s izes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogeneous set of devices. Moreover, the system is required to be ready to adapt the observation schedule, on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma ray bursts. This contribution provides a summary of the main design choices and plans for building the ACTL system.
The paper describes the techniques and method of registration of air shower radio emission at the Yakutsk array of extensive air showers at a frequency of 32 MHz. At this stage, emission registration involves two set of antennas, the distance between them is 500m. One set involves 8 antennas, second - 4 antennas. The antennas are perpendicularly crossed dipoles with radiation pattern North South,West East and raised 1.5 m above the ground. Each set of antennas connected to an industrial PC. The registration requires one of two triggers. First trigger are generated by scintillation detectors of Yakutsk array. Scintillation detectors cover area of 12 km^2 and registers air showers with energy more than 10^17 eV. The second trigger is generated by Small Cherenkov Array that covers area of 1 km^2 and registers air showers with energy 10^15 - 5*10^17 eV. Small Cherenkov Array is part of Yakutsk array and involve Cherenkov detectors located at a distance of 50, 100, 250 m. For further selection we are using an additional criterion the radio pulse must be localized in the area corresponding to the delay time on first and second triggers. In addition, descriptions of the algorithm and the flowcharts of the program for the air shower selection and further analysis are given. This method registers EAS radio emission with energy 10^16 - 10^19 eV. With the absolute calibration, the amplitudes of all antennas converted to a single value. Air shower radio emission dependences from zenith angle and shower energy are plotted.
133 - Philippe Raffin 2016
Since the ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO), SAO and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA) are working jointly to relocate the antenna to Greenland. This pa per shows the status of the antenna retrofit and the work carried out after the recommissioning and subsequent disassembly of the antenna at the VLA has taken place. The next coming months will see the start of the antenna reassembly at Thule Air Base. These activities are expected to last until the fall of 2017 when commissioning should take place. In parallel, design, fabrication and testing of the last components are taking place in Taiwan.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا