ﻻ يوجد ملخص باللغة العربية
We present measurements of the orbital positions and flux ratios of 17 binary and triple systems in the Ophiuchus star forming region and the Upper Centaurus-Lupus cluster based on adaptive optics imaging at the Keck Observatory. We report the detection of visual companions in MML 50 and MML 53 for the first time, as well as the possible detection of a third component in WSB 21. For six systems in our sample, our measurements provide a second orbital position following their initial discoveries over a decade ago. For eight systems with sufficient orbital coverage, we analyze the range of orbital solutions that fit the data. Ultimately, these observations will help provide the groundwork toward measuring precise masses for these pre-main sequence stars and understanding the distribution of orbital parameters in young multiple systems.
We present observations of disc-bearing stars in Upper Scorpius (US) and Upper Centaurus-Lupus (UCL) with moderate resolution spectroscopy in order to determine the influence of multiplicity on disc persistence after ~5-20 Myr. Discs were identified
Using K2, we recently discovered a new type of periodic photometric variability while analysing the light curves of members of Upper Sco (Stauffer etal 2017). The 23 exemplars of this new variability type are all mid-M dwarfs, with short rotation per
HD,139614 is known to be a $sim$14-Myr-old, possibly pre-main-sequence star in the Sco-Cen OB association in the Upper Centaurus-Lupus subgroup, with a slightly warped circumstellar disc containing ring structures hinting at one or more planets. The
We report our analyses of the multi-epoch (2015-2017) ALMA archival data of the Class II binary system XZ Tau at Bands 3, 4 and 6. The millimeter dust continuum images show compact, unresolved (r <~ 15 au) circumstellar disks (CSDs) around the indivi
We combine extinction maps from the Two Micron All Sky Survey (2MASS) with Hipparcos and Tycho parallaxes to obtain reliable and high-precision estimates of the distance to the Ophiuchus and Lupus dark complexes. Our analysis, based on a rigorous max