ترغب بنشر مسار تعليمي؟ اضغط هنا

Even More Rapidly Rotating Pre-Main Sequence M Dwarfs with Highly Structured Light Curves: An Initial Survey in the Lower Centaurus-Crux and Upper Centaurus-Lupus Associations

73   0   0.0 ( 0 )
 نشر من قبل Luisa Rebull
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using K2, we recently discovered a new type of periodic photometric variability while analysing the light curves of members of Upper Sco (Stauffer etal 2017). The 23 exemplars of this new variability type are all mid-M dwarfs, with short rotation periods. Their phased light curves have one or more broad flux dips or multiple arcuate structures which are not explicable by photospheric spots or eclipses by solid bodies. Now, using TESS data, we have searched for this type of variability in the other major sections of Sco-Cen, Upper Centaurus-Lupus (UCL) and Lower Centaurus-Crux (LCC). We identify 28 stars with the same light curve morphologies. We find no obvious difference between the Upper Sco and the UCL/LCC representatives of this class in terms of their light curve morphologies, periods or variability amplitudes. The physical mechanism behind this variability is unknown, but as a possible clue we show that the rapidly rotating mid-M dwarfs in UCL/LCC have slightly different colors from the slowly rotating M dwarfs - they either have a blue excess (hot spots?) or a red excess (warm dust?). One of the newly identified stars (TIC242407571) has a very striking light curve morphology. At about every 0.05 in phase are features that resemble icicles, The icicles arise because there is a second periodic system whose main feature is a broad flux dip. Using a toy model, we show that the observed light curve morphology results only if the ratio of the two periods and the flux dip width are carefully arranged.

قيم البحث

اقرأ أيضاً

HD,139614 is known to be a $sim$14-Myr-old, possibly pre-main-sequence star in the Sco-Cen OB association in the Upper Centaurus-Lupus subgroup, with a slightly warped circumstellar disc containing ring structures hinting at one or more planets. The stars chemical abundance pattern is metal-deficient except for volatile elements, which places it in the $lambda$ Boo class and suggests it has recently accreted gas-rich but dust-poor material. We identify seven dipole and four radial pulsation modes among its $delta$ Sct pulsations using the TESS light curve and an echelle diagram. Precision modelling with the MESA stellar evolution and GYRE stellar oscillation programs confirms it is on the pre-main sequence. Asteroseismic, grid-based modelling suggests an age of $10.75pm0.77$ Myr, a mass of $1.52pm0.02$ M$_{odot}$, and a global metal abundance of $Z=0.0100pm0.0010$. This represents the first asteroseismic determination of the bulk metallicity of a $lambda$ Boo star. The precise age and metallicity offer a benchmark for age estimates in Upper Centaurus--Lupus, and for understanding disc retention and planet formation around intermediate-mass stars.
62 - G. H. Schaefer , L. Prato , 2018
We present measurements of the orbital positions and flux ratios of 17 binary and triple systems in the Ophiuchus star forming region and the Upper Centaurus-Lupus cluster based on adaptive optics imaging at the Keck Observatory. We report the detect ion of visual companions in MML 50 and MML 53 for the first time, as well as the possible detection of a third component in WSB 21. For six systems in our sample, our measurements provide a second orbital position following their initial discoveries over a decade ago. For eight systems with sufficient orbital coverage, we analyze the range of orbital solutions that fit the data. Ultimately, these observations will help provide the groundwork toward measuring precise masses for these pre-main sequence stars and understanding the distribution of orbital parameters in young multiple systems.
We present high resolution (R=55,000) optical spectra obtained with MIKE on the 6.5 m Magellan Clay Telescope as well as Spitzer MIPS photometry and IRS low resolution (R~60) spectroscopy of the close (14 AU separation) binary, HD 101088, a member of the ~12 Myr old southern region of the Lower Centaurus Crux (LCC) subgroup of the Scorpius-Centaurus OB association. We find that the primary and/or secondary is accreting from a tenuous circumprimary and/or circumsecondary disk despite the apparent lack of a massive circumbinary disk. We estimate a lower limit to the accretion rate of > 1x10^-9 solar masses per year, which our multiple observation epochs show varies over a timescale of months. The upper limit on the 70 micron flux allows us to place an upper limit on the mass of dust grains smaller than several microns present in a circumbinary disk of 0.16 moon masses. We conclude that the classification of disks into either protoplanetary or debris disks based on fractional infrared luminosity alone may be misleading.
We present observations of disc-bearing stars in Upper Scorpius (US) and Upper Centaurus-Lupus (UCL) with moderate resolution spectroscopy in order to determine the influence of multiplicity on disc persistence after ~5-20 Myr. Discs were identified using infra-red (IR) excess from the Wide-field Infra-red Survey Explorer (WISE) survey. Our survey consists of 55 US members and 28 UCL members, using spatial and kinematic information to assign a probability of membership. Spectra are gathered from the ANU 2.3m telescope using the Wide Field Spectrograph (WiFeS) to detect radial velocity variations that indicate the presence of a companion. We identify 2 double-lined spectroscopic binaries, both of which have strong IR excess. We find the binary fraction of disc-bearing stars in US and UCL for periods up to 20 years to be $0.06^{0.07}_{0.02}$ and $0.13^{0.06}_{0.03}$ respectively. Based on the multiplicity of field stars, we obtain an expected binary fraction of $0.12^{0.02}_{0.01}$. The determined binary fractions for disc-bearing stars does not vary significantly from the field, suggesting that the overall lifetime of discs may not differ between single and binary star systems.
Using photometric data collected by Evryscope-South, we search for nearby young variable systems on the upper-main sequence (UMS) and pre-main sequence (PMS). The Evryscopes are all-sky high-cadence telescope arrays operating in the Northern and Sout hern hemispheres. We base our search on a Gaia-selected catalog of young neighborhood upper- and pre-main sequence stars which were chosen through both astrometric and photometric criteria. We analyze 44,971 Evryscope-South light curves in search of variability. We recover 615 variables, with 378 previously known, and 237 new discoveries including 84 young eclipsing binary (EB) candidates. We discover a new highly eccentric binary system and recover a further four previously known systems, with periods ranging from 299 to 674 hr. We find 158 long-period (>50 hr) candidate EB systems, 9 from the PMS and 149 from the UMS, which will allow constraints on the mass-radius-age relation. These long-period EBs include a 179.3 hr PMS system and a 867.8 hr system from the UMS. For PMS variable candidates we estimate system ages, which range from 1 to 23 Myr for non-EBs and from 2 to 17 Myr for EBs. Other non-EB discoveries that show intrinsic variability will allow relationships between stellar rotation rates, ages, activity, and mass to be characterized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا