ترغب بنشر مسار تعليمي؟ اضغط هنا

An interview based study of pioneering experiences in teaching and learning Complex Systems in Higher Education

132   0   0.0 ( 0 )
 نشر من قبل Joseph Lizier
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to the interdisciplinary nature of complex systems as a field, students studying complex systems at University level have diverse disciplinary backgrounds. This brings challenges (e.g. wide range of computer programming skills) but also opportunities (e.g. facilitating interdisciplinary interactions and projects) for the classroom. However, there is little published regarding how these challenges and opportunities are handled in teaching and learning Complex Systems as an explicit subject in higher education, and how this differs in comparison to other subject areas. We seek to explore these particular challenges and opportunities via an interview-based study of pioneering teachers and learners (conducted amongst the authors) regarding their experiences. We compare and contrast those experiences, and analyse them with respect to the educational literature. Our discussions explored: approaches to curriculum design, how theories/models/frameworks of teaching and learning informed decisions and experience, how diversity in student backgrounds was addressed, and assessment task design. We found a striking level of commonality in the issues expressed as well as the strategies to handle them, for example a significant focus on problem-based learning, and the use of major student-led creative projects for both achieving and assessing learning outcomes.

قيم البحث

اقرأ أيضاً

Background: Qualitative interviewing is a common tool that has been utilized by Science, Technology, Engineering, and Mathematics (STEM) education researchers to explore and describe the experiences of students, educators, or other educational stakeh olders. Some interviewing techniques use co-creation of an artifact, such as a personal timeline, as a unique way to elicit a detailed narrative from a respondent. The purpose of this commentary is to describe an interview artifact called a life grid. First used and validated in medical sociology to conduct life course research, we adapted the life grid for use in research on undergraduate STEM education. We applied the life grid interview technique to two contexts: 1) students in an advance degree program reflecting on their entire undergraduate career as a biology major, and 2) students in an undergraduate physics program reflecting on a multi-week lab project. Results: We found that the life grid supported four important attributes of an interview: facilitation of the respondents agency, establishment of rapport between interviewers and respondents, enhanced depth of the respondents narratives, and the construction of more accurate accounts of events. We situate our experiences with respect to those attributes and compare them with the experiences detailed in literature. Conclusions: We conclude with recommendations for future use of the life grid technique in undergraduate STEM education research. Overall, we find the life grid to be a valuable tool to use when conducting interviews about phenomena with a chronological component.
Programming education is becoming important as demands on computer literacy and coding skills are growing. Despite the increasing popularity of interactive online learning systems, many programming courses in schools have not changed their teaching f ormat from the conventional classroom setting. We see two research opportunities here. Students may have diverse expertise and experience in programming. Thus, particular content and teaching speed can be disengaging for experienced students or discouraging for novice learners. In a large classroom, instructors cannot oversee the learning progress of each student, and have difficulty matching teaching materials with the comprehension level of individual students. We present ClassCode, a web-based environment tailored to programming education in classrooms. Students can take online tutorials prepared by instructors at their own pace. They can then deepen their understandings by performing interactive coding exercises interleaved within tutorials. ClassCode tracks all interactions by each student, and summarizes them to instructors. This serves as a progress report, facilitating the instructors to provide additional explanations in-situ or revise course materials. Our user evaluation through a small lecture and expert review by instructors and teaching assistants confirm the potential of ClassCode by uncovering how it could address issues in existing programming courses at universities.
The utilisation of blockchain has moved beyond digital currency to other fields such as health, the Internet of Things, and education. In this paper, we present a systematic mapping study to collect and analyse relevant research on blockchain technol ogy related to the higher education field. The paper concentrates on two main themes. First, it examines state of the art in blockchain-based applications that have been developed for educational purposes. Second, it summarises the challenges and research gaps that need to be addressed in future studies.
Although online education has become a viable and major component of higher education in many fields, its employment in engineering disciplines has been limited. COVID-19 pandemic compelled the global and abrupt conversion of conventional face-to-fac e instruction to the online format. The negative impact of such sudden change is undeniable. Urgent and careful planning is needed to mitigate pandemic negative effects on engineering education, especially for vulnerable, disadvantaged, and underrepresented students who have to deal with additional challenges (e.g. digital equity gap). To enhance engineering online instruction during the pandemic era, we conducted an observational study at California State University, Long Beach (a minority-serving institution). 110 faculty and 627 students from six engineering departments participated in our surveys and answered quantitative and qualitative questions to highlight the challenges they experienced during the online instruction in Spring 2020. In this work, we present the results of these surveys in detail and propose solutions to address the identified issues including logistical, technical, learning/teaching challenges, assessment methods, and hands-on training. As the pandemic continues, sharing these results with other educators can help with more effective planning and choice of best practices to improve the online engineering education during COVID-19 and beyond.
We investigate students sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain---namely, upper-division physics labs---they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا