ترغب بنشر مسار تعليمي؟ اضغط هنا

ClassCode: An Interactive Teaching and Learning Environment for Programming Education in Classrooms

219   0   0.0 ( 0 )
 نشر من قبل Ryo Suzuki
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Programming education is becoming important as demands on computer literacy and coding skills are growing. Despite the increasing popularity of interactive online learning systems, many programming courses in schools have not changed their teaching format from the conventional classroom setting. We see two research opportunities here. Students may have diverse expertise and experience in programming. Thus, particular content and teaching speed can be disengaging for experienced students or discouraging for novice learners. In a large classroom, instructors cannot oversee the learning progress of each student, and have difficulty matching teaching materials with the comprehension level of individual students. We present ClassCode, a web-based environment tailored to programming education in classrooms. Students can take online tutorials prepared by instructors at their own pace. They can then deepen their understandings by performing interactive coding exercises interleaved within tutorials. ClassCode tracks all interactions by each student, and summarizes them to instructors. This serves as a progress report, facilitating the instructors to provide additional explanations in-situ or revise course materials. Our user evaluation through a small lecture and expert review by instructors and teaching assistants confirm the potential of ClassCode by uncovering how it could address issues in existing programming courses at universities.



قيم البحث

اقرأ أيضاً

Over the past decades, numerous practical applications of machine learning techniques have shown the potential of data-driven approaches in a large number of computing fields. Machine learning is increasingly included in computing curricula in higher education, and a quickly growing number of initiatives are expanding it in K-12 computing education, too. As machine learning enters K-12 computing education, understanding how intuition and agency in the context of such systems is developed becomes a key research area. But as schools and teachers are already struggling with integrating traditional computational thinking and traditional artificial intelligence into school curricula, understanding the challenges behind teaching machine learning in K-12 is an even more daunting challenge for computing education research. Despite the central position of machine learning in the field of modern computing, the computing education research body of literature contains remarkably few studies of how people learn to train, test, improve, and deploy machine learning systems. This is especially true of the K-12 curriculum space. This article charts the emerging trajectories in educational practice, theory, and technology related to teaching machine learning in K-12 education. The article situates the existing work in the context of computing education in general, and describes some differences that K-12 computing educators should take into account when facing this challenge. The article focuses on key aspects of the paradigm shift that will be required in order to successfully integrate machine learning into the broader K-12 computing curricula. A crucial step is abandoning the belief that rule-based traditional programming is a central aspect and building block in developing next generation computational thinking.
With larger memory capacities and the ability to link into wireless networks, more and more students uses palmtop and handheld computers for learning activities. However, existing software for Web-based learning is not well-suited for such mobile dev ices, both due to constrained user interfaces as well as communication effort required. A new generation of applications for the learning domain that is explicitly designed to work on these kinds of small mobile devices has to be developed. For this purpose, we introduce CARLA, a cooperative learning system that is designed to act in hybrid wireless networks. As a cooperative environment, CARLA aims at disseminating teaching material, notes, and even components of itself through both fixed and mobile networks to interested nodes. Due to the mobility of nodes, CARLA deals with upcoming problems such as network partitions and synchronization of teaching material, resource dependencies, and time constraints.
Digital technologies are becoming increasingly prevalent in education, enabling personalized, high quality education resources to be accessible by students across the world. Importantly, among these resources are diagnostic questions: the answers tha t the students give to these questions reveal key information about the specific nature of misconceptions that the students may hold. Analyzing the massive quantities of data stemming from students interactions with these diagnostic questions can help us more accurately understand the students learning status and thus allow us to automate learning curriculum recommendations. In this competition, participants will focus on the students answer records to these multiple-choice diagnostic questions, with the aim of 1) accurately predicting which answers the students provide; 2) accurately predicting which questions have high quality; and 3) determining a personalized sequence of questions for each student that best predicts the students answers. These tasks closely mimic the goals of a real-world educational platform and are highly representative of the educational challenges faced today. We provide over 20 million examples of students answers to mathematics questions from Eedi, a leading educational platform which thousands of students interact with daily around the globe. Participants to this competition have a chance to make a lasting, real-world impact on the quality of personalized education for millions of students across the world.
Computer programming was once thought of as a skill required only by professional software developers. But today, given the ubiquitous nature of computation and data science it is quickly becoming necessary for all scientists and engineers to have at least a basic knowledge of how to program. Teaching how to program, particularly to those students with little or no computing background, is well-known to be a difficult task. However, there is also a wealth of evidence-based teaching practices for teaching programming skills which can be applied to greatly improve learning outcomes and the student experience. Adopting these practices naturally gives rise to greater learning efficiency - this is critical if programming is to be integrated into an already busy geoscience curriculum. This paper considers an undergraduate computer programming course, run during the last 5 years in the Department of Earth Science and Engineering at Imperial College London. The teaching methodologies that were used each year are discussed alongside the challenges that were encountered, and how the methodologies affected student performance. Anonymised student marks and feedback are used to highlight this, and also how the adjustments made to the course eventually resulted in a highly effective learning environment.
This competition concerns educational diagnostic questions, which are pedagogically effective, multiple-choice questions (MCQs) whose distractors embody misconceptions. With a large and ever-increasing number of such questions, it becomes overwhelmin g for teachers to know which questions are the best ones to use for their students. We thus seek to answer the following question: how can we use data on hundreds of millions of answers to MCQs to drive automatic personalized learning in large-scale learning scenarios where manual personalization is infeasible? Success in using MCQ data at scale helps build more intelligent, personalized learning platforms that ultimately improve the quality of education en masse. To this end, we introduce a new, large-scale, real-world dataset and formulate 4 data mining tasks on MCQs that mimic real learning scenarios and target various aspects of the above question in a competition setting at NeurIPS 2020. We report on our NeurIPS competition in which nearly 400 teams submitted approximately 4000 submissions, with encouragingly diverse and effective approaches to each of our tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا