ﻻ يوجد ملخص باللغة العربية
We show that a system of three species of one-dimensional fermions, with an attractive three-body contact interaction, features a scale anomaly directly related to the anomaly of two-dimensional fermions with two-body forces. We show, furthermore, that those two cases (and their multi species generalizations) are the only non-relativistic systems with contact interactions that display a scale anomaly. While the two-dimensional case is well-known and has been under study both experimentally and theoretically for years, the one-dimensional case presented here has remained unexplored. For the latter, we calculate the impact of the anomaly on the equation of state, which appears through the generalization of Tans contact for three-body forces, and determine the pressure at finite temperature. In addition, we show that the third-order virial coefficient is proportional to the second-order coefficient of the two-dimensional two-body case.
A system of two-species, one-dimensional fermions, with an attractive two-body interaction of the derivative-delta type, features a scale anomaly. In contrast to the well-known two-dimensional case with contact interactions, and its one-dimensional c
We solve the three-boson problem with contact two- and three-body interactions in one dimension and analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion Monte Carlo technique we calculate the binding energ
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W,
We study a model of two species of one-dimensional linearly dispersing fermions interacting via an s-wave Feshbach resonance at zero temperature. While this model is known to be integrable, it possesses novel features that have not previously been in
Using a coarse temporal lattice approximation, we calculate the first few terms of the virial expansion of a three-species fermion system with a three-body contact interaction in $d$ spatial dimensions, both in homogeneous space as well as in a harmo