ﻻ يوجد ملخص باللغة العربية
A system of two-species, one-dimensional fermions, with an attractive two-body interaction of the derivative-delta type, features a scale anomaly. In contrast to the well-known two-dimensional case with contact interactions, and its one-dimensional cousin with three-body interactions (studied recently by some of us and others), the present case displays dimensional transmutation featuring a power-law rather than a logarithmic behavior. We use both the Schr{o}dinger equation and quantum field theory to study bound and scattering states, showing consistency between both approaches. We show that the expressions for the reflection $(R)$ and the transmission $(T)$ coefficients of the renormalized, anomalous derivative-delta potential are identical to those of the regular delta potential. The second-order virial coefficient is calculated analytically using the Beth-Uhlenbeck formula, and we make comments about the proper $epsilon_Brightarrow 0$ (where $epsilon_B$ is the bound-state energy) limit. We show the impact of the quantum anomaly (which appears as the binding energy of the two-body problem, or equivalently as Tans contact) on the equation of state and on other universal relations. Our emphasis throughout is on the conceptual and structural aspects of this problem.
We show that a system of three species of one-dimensional fermions, with an attractive three-body contact interaction, features a scale anomaly directly related to the anomaly of two-dimensional fermions with two-body forces. We show, furthermore, th
We solve the three-boson problem with contact two- and three-body interactions in one dimension and analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion Monte Carlo technique we calculate the binding energ
We study a model of two species of one-dimensional linearly dispersing fermions interacting via an s-wave Feshbach resonance at zero temperature. While this model is known to be integrable, it possesses novel features that have not previously been in
Quantum anomaly manifests itself in the deviation of breathing mode frequency from the scale invariant value of $2omega$ in two-dimensional harmonically trapped Fermi gases, where $omega$ is the trapping frequency. Its recent experimental observation
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W,