ﻻ يوجد ملخص باللغة العربية
We study a model of two species of one-dimensional linearly dispersing fermions interacting via an s-wave Feshbach resonance at zero temperature. While this model is known to be integrable, it possesses novel features that have not previously been investigated. Here, we present an exact solution based on the coordinate Bethe Ansatz. In the limit of infinite resonance strength, which we term the strongly interacting limit, the two species of fermions behave as free Fermi gases. In the limit of infinitely weak resonance, or the weakly interacting limit, the gases can be in different phases depending on the detuning, the relative velocities of the particles, and the particle densities. When the molecule moves faster or slower than both species of atoms, the atomic velocities get renormalized and the atoms may even become non-chiral. On the other hand, when the molecular velocity is between that of the atoms, the system may behave like a weakly interacting Lieb-Liniger gas.
We consider trapped bosons with contact interactions as well as Coulomb repulsion or gravitational attraction in one spatial dimension. The exact ground state energy and wave function are identified in closed form together with a rich phase diagram,
We show that a system of three species of one-dimensional fermions, with an attractive three-body contact interaction, features a scale anomaly directly related to the anomaly of two-dimensional fermions with two-body forces. We show, furthermore, th
We consider Feshbach scattering of fermions in a one-dimensional optical lattice. By formulating the scattering theory in the crystal momentum basis, one can exploit the lattice symmetry and factorize the scattering problem in terms of center-of-mass
A system of two-species, one-dimensional fermions, with an attractive two-body interaction of the derivative-delta type, features a scale anomaly. In contrast to the well-known two-dimensional case with contact interactions, and its one-dimensional c
We employ the (dynamical) density matrix renormalization group technique to investigate the ground-state properties of the Bose-Hubbard model with nearest-neighbor transfer amplitudes t and local two-body and three-body repulsion of strength U and W,