ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo$_2$(AsO$_4$)$_2$ frustrated honeycomb-lattice magnet

95   0   0.0 ( 0 )
 نشر من قبل Emilio Lorenzo J
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic properties of the cobaltite {BCAO}, a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector {bf{Q}}, we have been able to determine the low-temperature magnetic structure of {BCAO} and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector ${bf{k}}_{1}=(k_{x}, 0, k_{z}$), with $k_{x}=0.270{pm}0.005$ and $k_{z} approx -1.31$) appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component $ approx 0.25{mu}_{B}$/Co$^{2+}$, representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements $P_{yz}$ and $P_{zy}$ of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors ${bf{Q}}=(0.27, 0, 3.1)$ and ${bf{Q}}=(0.73, 0, 0.8)$ (energy transfer ${Delta}E approx 2.3$ meV), no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic $P_{yz}$ and $P_{zy}$ matrix elements can be understood by assuming that the magnetic excitations in {BCAO} are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

قيم البحث

اقرأ أيضاً

We present observations of highly frustrated quasi two-dimensional (2D) magnetic correlations in the honeycomb lattice layers of the S$_{eff}$ = 1/2 compound $gamma$-BaCo$_2$(PO$_4$)$_2$ ($gamma$-BCPO). Specific heat shows a broad peak comprised of t wo weak kink features at $T_{N1} sim$ 6 K and $T_{N2} sim$ 3.5 K, the relative weights of which can be modified by sample annealing. Neutron powder diffraction measurements reveal short range quasi-2D order that is established below $T_{N1}$ and $T_{N2}$, at which two separate, incompatible, short range magnetic orders onset: commensurate antiferromagnetic correlations with correlation length $xi_c = 60pm2$ AA ($T_{N1}$) and in quasi-2D helical domains with $xi_h = 350 pm 11$ AA ($T_{N2}$). The ac magnetic susceptibility response lacks frequency dependence, ruling out spin freezing. Inelastic neutron scattering data on $gamma$-BCPO is compared with linear spin wave theory, and two separate parameter regions of the XXZ $J_1$-$J_2$-$J_3$ model with ferromagnetic nearest-neighbor exchange $J_1$ are favored, both near regions of high classical degeneracy. High energy coherent excitations ($sim 10$ meV) persist up to at least 40 K, suggesting strong in-plane correlations persist above $T_N$. These data show that $gamma$-BCPO is a rare highly frustrated, quasi-2D S$_{eff}$ = 1/2 honeycomb lattice material which resists long range magnetic order and spin freezing.
134 - B.Liu , L.Wang , I.Radelytskyi 2019
Temperature and field-dependent magnetization $M(H,T)$ measurements and neutron scattering study of a single crystal CeSb$_2$ are presented. Several anomalies in the magnetization curves have been confirmed at low magnetic field, i.e., 15.6 K, 12 K, and 9.8 K. These three transitions are all metamagnetic transitions (MMT), which shift to lower temperatures as the magnetic field increases. The anomaly at 15.6 K has been suggested as paramagnetic (PM) to ferromagnetic (FM) phase transition. The anomaly located at around 12 K is antiferromagnetic-like transition, and this turning point will clearly split into two when the magnetic field $Hgeq0.2$ T. Neutron scattering study reveals that the low temperature ground state of CeSb$_2$ orders antiferromagnetically with commensurate propagation wave vectors $textbf{k}=(-1,pm1/6,0)$ and $textbf{k}=(pm1/6,-1,0)$, with Neel temperature $T_Nsim9.8$ K. This transition is of first-order, as shown in the hysteresis loop observed by the field cooled cooling (FCC) and field cooled warming (FCW) processes.
118 - N. Li , Q. Huang , A. Brassington 2021
We have grown single crystals of Na$_2$BaNi(PO$_4$)$_2$, a new spin-1 equilateral triangular lattice antiferromagnet (ETLAF), and performed magnetic susceptibility, specific heat and thermal conductivity measurements at ultralow temperatures. The mai n results are (i) at zero magnetic field, Na$_2$BaNi(PO$_4$)$_2$ exhibits a magnetic ordering at 430 mK with a weak ferromagnetic moment along the $c$ axis. This suggests a canted 120$^circ$ spin structure, which is in a plane including the crystallographic $c$ axis due to the existence of an easy-axis anisotropy and ferromagnetically stacked along the $c$ axis; (ii) with increasing field along the $c$ axis, a 1/3 magnetization plateau is observed which means the canted 120$^circ$ spin structure is transformed to a up up down (UUD) spin structure. With even higher fields, the UUD phase further evolves to possible V and V phases; (iii) with increasing field along the $a$ axis, the canted 120$^circ$ spin structure is possibly transformed to a umbrella phase and a V phase. Therefore, Na$_2$BaNi(PO$_4$)$_2$ is a rare example of spin-1 ETLAF with single crystalline form to exhibit easy-axis spin anisotropy and series of quantum spin state transitions.
Nodal-chain fermions, as novel topological states of matter, have been hotly discussed in non-magnetic materials. Here, by using first-principles calculations and symmetry analysis, we propose the realization of fully spin-polarized nodal chain in th e half-metal state of LiV$_2$O$_4$ compound. The material naturally shows a ferromagnetic ground state, and takes on a half-metal band structure with only the bands from the spin-up channel present near the Fermi level. The spin-up bands cross with each other, which form two types of nodal loops. These nodal loops arise from band inversion and are under the protection of the glide mirror symmetries. Remarkably, we find the nodal loops conjunct with each other and form chain-like nodal structure. Correspondingly, the w-shaped surface states are also fully spin-polarized. The fully spin-polarized nodal chain identified here has not been proposed in realistic materials before. An effective model is constructed to describe the nature of nodal chain. The effects of the electron correlation, the lattice strains, and the spin-orbit coupling are discussed. The fully spin-polarized bulk nodal-chain and the associated nontrivial surface states for a half-metal may open novel applications in spintronics.
With decreasing temperature Sr$_2$VO$_4$ undergoes two structural phase transitions, tetragonal-to-orthorhombic-to-tetragonal, without long-range magnetic order. Recent experiments suggest, that only at very low temperature Sr$_{2}$VO$_{4}$ might ent er some, yet unknown, phase with long-range magnetic order, but without orthorhombic distortion. By combining relativistic density functional theory with an extended spin-1/2 compass-Heisenberg model we find an antiferromagnetic single-stripe ground state with highly competing exchange interactions, involving a non negligible inter-layer coupling, which places the system at the crossover between between the XY and Heisenberg picture. Most strikingly, we find a strong two-site spin-compass exchange anisotropy which is relieved by the orthorhombic distortion induced by the spin stripe order. Based on these results we discuss the origin of the hidden order phase and the possible formation of a spin-liquid at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا